A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual Electrospun Supramolecular Polymer Systems for Selective Cell Migration. | LitMetric

Dual Electrospun Supramolecular Polymer Systems for Selective Cell Migration.

Macromol Biosci

Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.

Published: July 2018

Dual electrospinning can be used to make multifunctional scaffolds for regenerative medicine applications. Here, two supramolecular polymers with different material properties are electrospun simultaneously to create a multifibrous mesh. Bisurea (BU)-based polycaprolactone, an elastomer providing strength to the mesh, and ureido-pyrimidinone (UPy) modified poly(ethylene glycol) (PEG), a hydrogelator, introducing the capacity to deliver compounds upon swelling. The dual spun scaffolds are modularly tuned by mixing UPyPEG hydrogelators with different polymer lengths, to control swelling of the hydrogel fiber, while maintaining the mechanical properties of the scaffold. Stromal cell derived factor 1 alpha (SDF1α) peptides are embedded in the UPyPEG fibers. The swelling and erosion of UPyPEG increase void spaces and released the SDF1α peptide. The functionalized scaffolds demonstrate preferential lymphocyte recruitment proposed to be created by a gradient formed by the released SDF1α peptide. This delivery approach offers the potential to develop multifibrous scaffolds with various functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201800004DOI Listing

Publication Analysis

Top Keywords

released sdf1α
8
sdf1α peptide
8
dual electrospun
4
electrospun supramolecular
4
supramolecular polymer
4
polymer systems
4
systems selective
4
selective cell
4
cell migration
4
migration dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!