We present a new image reconstruction method that replaces the projector in a projected gradient descent (PGD) with a convolutional neural network (CNN). Recently, CNNs trained as image-to-image regressors have been successfully used to solve inverse problems in imaging. However, unlike existing iterative image reconstruction algorithms, these CNN-based approaches usually lack a feedback mechanism to enforce that the reconstructed image is consistent with the measurements. We propose a relaxed version of PGD wherein gradient descent enforces measurement consistency, while a CNN recursively projects the solution closer to the space of desired reconstruction images. We show that this algorithm is guaranteed to converge and, under certain conditions, converges to a local minimum of a non-convex inverse problem. Finally, we propose a simple scheme to train the CNN to act like a projector. Our experiments on sparse-view computed-tomography reconstruction show an improvement over total variation-based regularization, dictionary learning, and a state-of-the-art deep learning-based direct reconstruction technique.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2018.2832656DOI Listing

Publication Analysis

Top Keywords

gradient descent
12
image reconstruction
12
projected gradient
8
reconstruction
6
cnn-based projected
4
descent consistent
4
image
4
consistent image
4
reconstruction image
4
reconstruction method
4

Similar Publications

Introduction: This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.

Methods: Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.

View Article and Find Full Text PDF

In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to high false positive rates, which is unacceptable in disease monitoring and early warning.

View Article and Find Full Text PDF

The generation of spectral libraries using hyperspectral data allows for the capture of detailed spectral signatures, uncovering subtle variations in plant physiology, biochemistry, and growth stages, marking a significant advancement over traditional land cover classification methods. These spectral libraries enable improved forest classification accuracy and more precise differentiation of plant species and plant functional types (PFTs), thereby establishing hyperspectral sensing as a critical tool for PFT classification. This study aims to advance the classification and monitoring of PFTs in Shoolpaneshwar wildlife sanctuary, Gujarat, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and machine learning techniques.

View Article and Find Full Text PDF

Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.

View Article and Find Full Text PDF

Fundus imaging, a technique for recording retinal structural components and anomalies, is essential for observing and identifying ophthalmological diseases. Disorders such as hypertension, glaucoma, and diabetic retinopathy are indicated by structural alterations in the optic disc, blood vessels, fovea, and macula. Patients frequently deal with various ophthalmological conditions in either one or both eyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!