In the area of magnetic resonance imaging (MRI), an extensive range of non-linear reconstruction algorithms has been proposed which can be used with general Fourier subsampling patterns. However, the design of these subsampling patterns has typically been considered in isolation from the reconstruction rule and the anatomy under consideration. In this paper, we propose a learning-based framework for optimizing MRI subsampling patterns for a specific reconstruction rule and anatomy, considering both the noiseless and noisy settings. Our learning algorithm has access to a representative set of training signals, and searches for a sampling pattern that performs well on average for the signals in this set. We present a novel parameter-free greedy mask selection method and show it to be effective for a variety of reconstruction rules and performance metrics. Moreover, we also support our numerical findings by providing a rigorous justification of our framework via statistical learning theory.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2018.2832540DOI Listing

Publication Analysis

Top Keywords

subsampling patterns
12
reconstruction rule
8
rule anatomy
8
learning-based compressive
4
compressive mri
4
mri area
4
area magnetic
4
magnetic resonance
4
resonance imaging
4
imaging mri
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!