The continued demand for gas-phase molecular structures has led to the recommissioning of a gas electron diffractometer, formerly housed at the University of Reading. The gas electron diffractometer, now the only one of its kind in the U.K., is currently housed at the University of York, where it is now used routinely to determine directly structures of isolated molecules in the gas phase. The instrument has been fitted with an air-heated nozzle assembly to increase the range of molecules accessible to study in the gas phase; the efficacy of this assembly is demonstrated in this article via the determination of the gas-phase structure of 4-(dimethylamino)benzonitrile (DMABN) at high temperature. A series of complementary theoretical calculations using the B2PLYP DFT functional of Grimme et al. with correlation-consistent basis sets of double, triple, and quadruple-ζ quality are also presented. The agreement between the experimental and theoretical structural parameters attests to the accuracy of the applied theoretical calculations and of our gas-phase structural solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.8b03613DOI Listing

Publication Analysis

Top Keywords

gas electron
16
electron diffractometer
12
structure 4-dimethylaminobenzonitrile
8
housed university
8
gas phase
8
theoretical calculations
8
gas
6
4-dimethylaminobenzonitrile gas
4
electron
4
electron diffraction
4

Similar Publications

A Study on the Development of Real-Time Chamber Contamination Diagnosis Sensors.

Sensors (Basel)

December 2024

Department of Energy & Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea.

Plasma processes are critical for achieving precise device fabrication in semiconductor manufacturing. However, polymer accumulation during processes like plasma etching can cause chamber contamination, adversely affecting plasma characteristics and process stability. This study focused on developing a real-time sensor system for diagnosing chamber contamination by quantitatively monitoring polymer accumulation.

View Article and Find Full Text PDF

Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.

View Article and Find Full Text PDF

(), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited.

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!