Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO)(OH)(OH) ] (where n = 0-3) were examined by a range of spectroscopic techniques including Tc/C NMR, IR, XPS, and XAS. In the series of monomeric aqua species, stepwise hydrolysis results in the increase of the Tc metal center electron density and corresponding progressive decrease of the Tc-C bond distances, Tc electron binding energies, and carbonyl stretching frequencies in the order [ fac-Tc(CO)(OH)] > [ fac-Tc(CO)(OH)(OH)] > [ fac-Tc(CO)(OH)(OH)]. These results correlate with established trends of the Tc upfield chemical shift and carbonyl C downfield chemical shift. The lone exception is [ fac-Tc(CO)(OH)] which exhibits a comparatively low electron density at the metal center attributed to the μ-bridging nature of the OH ligands causing less σ-donation and no π-donation. This work also reports the first observations of these compounds by XPS and [ fac-Tc(CO)Cl] by XAS. The unique and distinguishable spectral features of the aqua [ fac-Tc(CO)] complexes lay the foundation for their identification in the complex aqueous matrixes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b00490 | DOI Listing |
Sci Rep
December 2024
School of Computer Science, University of Nottingham, Nottingham, UK.
Robotics holds the potential to streamline the execution of repetitive and dangerous tasks, which are difficult or impossible for a human operator. However, in complex scenarios, such as nuclear waste management or disaster response, full automation often proves unfeasible due to the diverse and intricate nature of tasks, coupled with the unpredictable hazards, and is typically prevented by stringent regulatory frameworks. Consequently, the predominant approach to managing activities in such settings remains human teleoperation.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Aomori, Japan.
Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.
View Article and Find Full Text PDFGels
November 2024
Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km 7.5, 07122 Palma, Spain.
Carob pulp is a valuable source of cellulose-rich fraction (CRF) for many food applications. This study aimed to obtain and characterize a CRF derived from carob pulp waste after sugar removal and to evaluate its potential use in the 3D printing of cellulose-rich foods. Thus, the extraction of the CRF present in carob pulp (by obtaining the alcohol-insoluble residue) was carried out, accounting for nearly 45% dm (dry matter) of this byproduct.
View Article and Find Full Text PDFWaste Manag
December 2024
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNiCoMnO (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NHHSO roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.
View Article and Find Full Text PDFArh Hig Rada Toksikol
December 2024
1Institute for Medical Research and Occupational Health, Division of Radiation Protection, Zagreb, Croatia.
Coal mined in the shut-down Raša mine in Istria, Croatia had a high organic sulphur content. What has remained of its local combustion is a coal and ash waste (legacy site) whose trace element and radionuclide composition in soil has enduring consequences for the environment. The aim of this study was to follow up on previous research and investigate the potential impact on surrounding soil and local residents by characterising the site's ash and soil samples collected in two field campaigns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!