Hot pepper (Capsicum annuum) is one of the most consumed vegetable crops in the world and useful to human as it has many nutritional and medicinal values. Genomic resources of pepper are publically available since the pepper genomes have been completed and massive data such as transcriptomes have been deposited. Nevertheless, global transcriptome profiling is needed to identify molecular mechanisms related to agronomic traits in pepper, but limited analyses are published. Here, we report the comprehensive analysis of pepper transcriptomes during fruit ripening and pathogen infection. For the ripening, transcriptome data were obtained from placenta and pericarp at seven developmental stages. To reveal global transcriptomic landscapes during infection, leaves at six time points post-infection by one of three pathogens (Phytophthora infestans, Pepper mottle virus, and Tobacco mosaic virus P0 strain) were profiled. The massive parallel transcriptome profiling in this study will serve as a valuable resource for detection of molecular networks of fruit development and disease resistance in Capsicum annuum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987667PMC
http://dx.doi.org/10.1038/sdata.2018.103DOI Listing

Publication Analysis

Top Keywords

capsicum annuum
12
pepper capsicum
8
transcriptome profiling
8
pepper
7
global gene
4
gene expression
4
expression profiling
4
profiling fruit
4
fruit organs
4
organs pathogen
4

Similar Publications

This study, conducted between June 2022 and March 2023 in Dhaka, examined prevalence in 874 samples from vegetables, vegetable wash water, and hand swabs from vendors during summer and winter. Of the total samples, 782 (89.50%) tested positive for , with 95.

View Article and Find Full Text PDF

A comprehensive review on sustainable strategies for valorization of pepper waste and their potential application.

Compr Rev Food Sci Food Saf

January 2025

Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, India.

Pepper is an economically important crop grown worldwide for consumption as a vegetable and spice. Much waste, including crop plant waste, seeds, stalks, placenta, peels, and other processing byproducts, is generated by consumers during pepper crop production, processing, retail, and households. These peppers byproducts contain numerous bioactive compounds that can be used as ingredients for developing functional foods, nutraceuticals, and other food industries.

View Article and Find Full Text PDF

This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.

View Article and Find Full Text PDF

Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings.

Int J Mol Sci

January 2025

Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.

Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.

View Article and Find Full Text PDF

Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!