Vesicular stomatitis virus (VSV) expressing the Ebola virus (EBOV) glycoprotein (GP) in place of the VSV glycoprotein G (VSV/EBOV-GP) is a promising EBOV vaccine candidate which has already entered clinical phase 3 studies. Although this chimeric virus was tolerated overall by volunteers, it still caused viremia and adverse effects such as fever and arthritis, suggesting that it might not be sufficiently attenuated. In this study, the VSV/EBOV-GP vector was further modified in order to achieve attenuation while maintaining immunogenicity. All recombinant VSV constructs were propagated on VSV G protein expressing helper cells and used to immunize guinea pigs via the intramuscular route. The humoral immune response was analysed by EBOV-GP-specific fluorescence-linked immunosorbent assay, plaque reduction neutralization test and in vitro virus-spreading inhibition test that employed recombinant VSV/EBOV-GP expressing either green fluorescent protein or secreted Nano luciferase. Most modified vector constructs induced lower levels of protective antibodies than the parental VSV/EBOV-GP or a recombinant modified vaccinia virus Ankara vector encoding full-length EBOV-GP. However, the VSV/EBOV-GP(F88A) mutant was at least as immunogenic as the parental vaccine virus although it was highly propagation-restricted. This finding suggests that VSV-vectored vaccines need not be propagation-competent to induce a robust humoral immune response. However, VSV/EBOV-GP(F88A) rapidly reverted to a fully propagation-competent virus indicating that a single-point mutation is not sufficient to maintain the propagation-restricted phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152369 | PMC |
http://dx.doi.org/10.1099/jgv.0.001085 | DOI Listing |
Extracellular vesicles (EVs) show great potential for therapeutic delivery to human cells, with a focus on modulating immune responses. The most promising targets for inducing humoral and cellular immunity against a specific antigen are macrophages (Mϕs) and dendritic cells (DCs). Targeting mannose receptors (CD206), which are highly expressed on these antigen-presenting cells, to promote the presentation of specific antigens through EV-mediated uptake, is a promising strategy in clinical immunotherapy.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
PanTherapeutics, Lutry, Switzerland.
Cell Rep
January 2025
Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
Marburg virus disease (MVD) is a severe infectious disease characterized by fever and profound hemorrhage caused by the Marburg virus (MARV), with a mortality rate reaching 90%, posing a significant threat to humans. MARV lies in its classification as a biosafety level four (BSL-4) pathogen, which demands stringent experimental conditions and substantial funding. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV.
View Article and Find Full Text PDFAppl Biosaf
December 2024
National Microbiology, Public Health Agency of Canada, Winnipeg, Canada.
Introduction: Positive pressure breathing-air-fed protective suits are used in biosafety level 4 (BSL-4) containment laboratories as personal protective equipment to protect workers from high-consequence pathogens. However, even with the use of primary containment devices, the exterior surfaces of these suits could potentially become contaminated with those pathogens and result in their inadvertent removal from containment. To address the risk of such pathogens escaping from containment via contaminated protective suits, these suits are decontaminated in a disinfectant chemical shower situated in an anteroom prior to exiting the BSL-4 laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!