Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation.

ACS Appl Mater Interfaces

King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia.

Published: June 2018

The preparation and the performance of mixed matrix membranes based on metal-organic polyhedra (MOPs) are reported. MOP fillers can be dispersed as discrete molecular units (average 9 nm in diameter) when low filler cargos are used. In spite of the low doping amount (1.6 wt %), a large performance enhancement in permeability, aging resistance, and selectivity can be achieved. We rationalize this effect on the basis of the large surface to volume ratio of the filler, which leads to excellent dispersion at low concentrations and thus alters polymer packing. Although membranes based only on the polymer component age quickly with time, the performance of the resulting MOP-containing membranes meets the commercial target for postcombustion CO capture for more than 100 days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150657PMC
http://dx.doi.org/10.1021/acsami.8b07045DOI Listing

Publication Analysis

Top Keywords

metal-organic polyhedra
8
membranes based
8
molecular-scale hybrid
4
membranes
4
hybrid membranes
4
membranes derived
4
derived metal-organic
4
polyhedra gas
4
gas separation
4
separation preparation
4

Similar Publications

The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).

View Article and Find Full Text PDF

Design of cerium dioxide anchored in cobalt-iron layered double hydroxide hollow polyhedra via an ion exchange strategy for the oxygen evolution reaction.

J Colloid Interface Sci

December 2024

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China. Electronic address:

The oxygen evolution reaction (OER) is hindered by slow kinetics due to its four-electron process, limiting overall efficiency. The rational design of metal-organic framework (MOF)-based nanomaterials is crucial for enhancing the oxygen production rate. Using a straightforward strategy, we synthesized cobalt-iron layered double hydroxide (CoFe-LDH) hollow polyhedra loaded with CeO, with zeolite imidazolate framework-67 (ZIF-67) serving as the precursor.

View Article and Find Full Text PDF

Hydroxamate-Based Metal-Organic Frameworks.

Chemistry

December 2024

Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.

This mini-review focuses on recent developments in hydroxamate-based metal-organic frameworks (MOFs), which exhibit unique structures and properties distinct from those of carboxylate-based MOFs. Hydroxamates (RCONHO) form MOFs with novel structural motifs and functionalities. In this review, synthetic strategies, structural characteristics, and functional applications of key examples of hydroxamate-based MOFs are described, providing insights into the influence of the hydroxamate ligand on the MOF properties compared to that of the carboxylate-based analogues.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers used a combination of Ga-MOC and Ni-ethylenediamine complex as a binder to fine-tune the structural evolution of their co-assembled system by adjusting the binder ratio.
  • * Findings show that altering the binder ratio affects the length and properties of the resulting nanostructures, leading to the formation of hydrogels that can turn into crystals autonomously, influenced by the interactions between the components.
View Article and Find Full Text PDF

Coordination-Driven Crosslinking Electrolytes for Fast Lithium-Ion Conduction and Solid-State Battery Applications.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Rechargeable batteries paired with lithium (Li) metal anodes are considered to be promising high-energy storage systems. However, the use of highly reactive Li metal and the formation of Li dendrites during battery operation would cause safety concerns, especially with the employment of highly flammable liquid electrolytes. Herein, a general strategy by engineering coordination-driven crosslinking networks is proposed to achieve high-performance solid polymer electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!