Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wrna.1488 | DOI Listing |
Arthritis Rheumatol
December 2024
Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
Objective: Idiopathic inflammatory myopathies (myositis, IIMs) are rare, systemic autoimmune disorders that lead to muscle inflammation, weakness, and extra-muscular manifestations, with a strong genetic component influencing disease development and progression. Previous genome-wide association studies identified loci associated with IIMs. In this study, we imputed data from two prior genome-wide myositis studies and analyzed the largest myositis dataset to date to identify novel risk loci and susceptibility genes associated with IIMs and its clinical subtypes.
View Article and Find Full Text PDFJ Neurol
December 2024
Faculdade de Ciências Médicas da UNICAMP, Departamento de Neurologia da FCM/UNICAMP, Department of Neurology, Universidade Estadual de Campinas, University of Campinas, Cidade Universitária s/n Caixa Postal, 6111 Barão Geraldo, 13083970, Campinas, SP, Brasil.
Background: Spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders characterized by progressive ataxia. Although previous studies have focused on cerebral and cerebellar damage, spinal cord involvement in SCAs remains underexplored.
Objectives: This study aims to characterize spinal cord abnormalities in SCA2, SCA3, and SCA6 and to identify its phenotypic correlates.
Stem Cell Res Ther
November 2024
School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
Neurol Genet
December 2024
From the Neurology (A.M.B., L.M.J., R.G., J.M.M.-T., K.A.J., H.B.); Speech Pathology (G.M., J.S., J.R.D., H.C., R.L.U.); Psychology (M.M.M.); and Radiology (J.L.W.), Mayo Clinic, Rochester, MN.
Objectives: To describe a case of spinocerebellar ataxia presenting with progressive apraxia of speech (AOS).
Methods: A 54-year-old man with progressive speech changes was seen clinically and referred to our observational research program on degenerative speech and language disorders. He underwent detailed speech-language and neurologic assessments and multimodal neuroimaging studies.
Mol Neurobiol
November 2024
Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
Emerging evidence suggests potential disease modifying roles of ATXN1, ATXN2, and ATXN3 in amyotrophic lateral sclerosis (ALS). We aimed to provide a comprehensive variants profile of the ATXN1, ATXN2, and ATXN3 genes and examine the association of these variants with the risk and clinical characteristics of ALS. We screened and analyzed the rare variants in a cohort of 2220 ALS patients from Southwest China, using controls from the Genome Aggregation Database (gnomAD) and the China Metabolic Analytics Project (ChinaMAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!