Palladium-Catalyzed Cross-Coupling of Monochlorosilanes And Grignard Reagents.

ACS Catal

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.

Published: December 2017

Using a palladium catalyst supported by DrewPhos, the alkylation of monochlorosilanes with primary and secondary alkyl-magnesium halides is now possible. Arylation with sterically demanding aromatic magnesium halides is also enabled. This transformation overcomes the high bond strength of the Si-Cl bond (113 kcal/mol) and is a rare example of a transition-metal catalyzed process involving its activation. Due to the availability of both chlorosilanes and organomagnesium halide reagents, this method allows for the preparation of a wide range of alkyl and aryl silanes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984048PMC
http://dx.doi.org/10.1021/acscatal.7b03465DOI Listing

Publication Analysis

Top Keywords

palladium-catalyzed cross-coupling
4
cross-coupling monochlorosilanes
4
monochlorosilanes grignard
4
grignard reagents
4
reagents palladium
4
palladium catalyst
4
catalyst supported
4
supported drewphos
4
drewphos alkylation
4
alkylation monochlorosilanes
4

Similar Publications

Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission.

Molecules

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize . Palladium-catalyzed reactions have been used as post-functionalization methods.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses.

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF
Article Synopsis
  • A new palladium-catalyzed method has been developed to synthesize three natural products: (-)-lyngbyatoxin, (-)-teleocidin A2, and (-)-7-geranylindolactam V, using a technique called the Suzuki-Miyaura reaction.
  • This approach utilizes a ligand-controlled cross-coupling strategy, making it possible to create these compounds from a single advanced synthetic intermediate, which is the most efficient method reported to date.
  • Following the synthesis, research was conducted on cancer cell lines to investigate the potential cancer-fighting properties of these natural products.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!