Ticks are primary vectors for many well-known disease-causing agents that affect human and animal populations globally such as tick-borne encephalitis, Crimean-Congo hemorrhagic fever and African swine fever. In this study, viral metagenomics was used to identify what viruses are present in spp. ticks collected in the Zambezi Valley of Mozambique. The RNA was amplified with sequence-independent single primer amplification (SISPA) and high-throughput sequencing was performed on the Ion Torrent platform. The generated sequences were subjected to quality check and classfied by BLAST. CodonCode aligner and SeqMan were used to assemble the sequences. The majority of viral sequences showed closest sequence identity to the family, although viruses similar to the and were also identified. Nearly complete sequences of five orthomyxoviral segments (HA, NP, PB1, PB2, and PA) were obtained and these showed an amino acid identity of 32-52% to known quaranjaviruses. The sequences were most closely related to the Wellfleet Bay virus, detected and isolated from common eider during a mortality event in the USA. In summary, this study has identified a highly divergent virus with in the family associated with ticks from Mozambique. Further genetic and biological studies are needed in order to investigate potential pathogenesis of the identified orthomyxovirus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974704PMC
http://dx.doi.org/10.1080/20008686.2018.1478585DOI Listing

Publication Analysis

Top Keywords

viral metagenomics
8
highly divergent
8
ticks mozambique
8
sequences
5
metagenomics reveals
4
reveals presence
4
presence highly
4
divergent quaranjavirus
4
ticks
4
quaranjavirus ticks
4

Similar Publications

Despite the recent surge of viral metagenomic studies, it remains a significant challenge to recover complete virus genomes from metagenomic data. The majority of viral contigs generated from de novo assembly programs are highly fragmented, presenting significant challenges to downstream analysis and inference. To address this issue, we have developed Virseqimprover, a computational pipeline that can extend assembled contigs to complete or nearly complete genomes while maintaining extension quality.

View Article and Find Full Text PDF

Background: Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.

View Article and Find Full Text PDF

Exploring Tetraselmis chui microbiomes-functional metagenomics for novel catalases and superoxide dismutases.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.

View Article and Find Full Text PDF

The ability of viruses to emerge in new species is influenced by aspects of host biology and ecology, with some taxa harbouring a high diversity and abundance of viruses. However, how these factors shape virus diversity at the ecosystem scale is often unclear. To better understand the pattern and determinants of viral diversity within an ecosystem, and to describe the novel avian viruses infecting an individual avian community, we performed a metagenomic snapshot of the virome from the entire avian community on remote Pukenui/Anchor Island in Aotearoa New Zealand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!