AI Article Synopsis

  • - The study focused on 100 mothers who are carriers of the premutation associated with fragile X syndrome, exploring their health and cognitive characteristics in relation to different CGG repeat patterns in their DNA.
  • - Participants were divided into three groups based on their CGG repeat patterns: non-mosaic premutation, mosaic premutation, and a mix of premutation/full mutation, with the use of machine learning for classification.
  • - Surprisingly, mothers with a small number of full mutation cells (Group 3) reported better overall health and mental functioning compared to other groups, suggesting a potential link between genetic mosaicism and health outcomes.

Article Abstract

The premutation is of increasing interest to the FXS community, as questions about a primary premutation phenotype warrant research attention. 100 premutation carrier mothers (mean age = 58; 67-138 CGG repeats) of adults with fragile X syndrome were studied with respect to their physical and mental health, motor, and neurocognitive characteristics. We explored the correlates of CGG repeat mosaicism in women with expanded alleles. Mothers provided buccal swabs from which DNA was extracted and the CGG genotyping was performed (Amplidex Kit, Asuragen). Mothers were categorized into three groups: Group 1: premutation non-mosaic ( = 45); Group 2: premutation mosaic ( = 41), and Group 3: premutation/full mutation mosaic ( = 14). Group 2 mothers had at least two populations of cells with different allele sizes in the premutation range besides their major expanded allele. Group 3 mothers had a very small population of cells in the full mutation range (>200 CGGs) in addition to one or multiple populations of cells with different allele sizes in the premutation range. Machine learning (random forest) was used to identify symptoms and conditions that correctly classified mothers with respect to mosaicism; follow-up comparisons were made to characterize the three groups. In categorizing mosaicism, the random forest yielded significantly better classification than random classification, with overall area under the receiver operating characteristic curve (AUROC) of 0.737. Among the most important symptoms and conditions that contributed to the classification were anxiety, menopause symptoms, executive functioning limitations, and difficulty walking several blocks, with the women who had full mutation mosaicism (Group 3) unexpectedly having better health. Although only 14 premutation carrier mothers in the present sample also had a small population of full mutation cells, their profile of comparatively better health, mental health, and executive functioning was unexpected. This preliminary finding should prompt additional research on larger numbers of participants with more extensive phenotyping to confirm the clinical correlates of low-level full mutation mosaicism in premutation carriers and to probe possible mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964198PMC
http://dx.doi.org/10.3389/fgene.2018.00173DOI Listing

Publication Analysis

Top Keywords

full mutation
16
premutation carrier
12
carrier mothers
12
premutation
10
mothers
8
fragile syndrome
8
mental health
8
three groups
8
group premutation
8
mosaic group
8

Similar Publications

The genetics of non-syndromic dentinogenesis imperfecta: a systematic review.

Eur Arch Paediatr Dent

January 2025

Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.

Purpose: This systematic review aims to consolidate existing genetic and clinical data on non-syndromic dentinogenesis imperfecta (DI) to enhance understanding of its etiology.

Methods: Electronic databases were searched for genetic familial linkage studies published in English without time restrictions. Genetic familial linkage studies that reported cases of Shield's classifications: DI-II, DI-III or DD-II were included.

View Article and Find Full Text PDF

Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome.

Sci Rep

January 2025

Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.

View Article and Find Full Text PDF

Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).

Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.

Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.

View Article and Find Full Text PDF

Background: Citrin deficiency (CD) is an autosomal recessive metabolic disorder affecting the urea cycle and energy production. Diagnosis involves measuring ammonia, amino acid levels (eg: citrulline), with confirmation through solute carrier family 25 member 13 (SLC25A13) gene mutation analysis. Herein, we present a case report of a variant in the SLC25A13 gene that has not been previously reported in the literature.

View Article and Find Full Text PDF

Conformational switches in human RNA binding proteins involved in neurodegeneration.

Biochim Biophys Acta Gen Subj

January 2025

Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address:

Conformational switching in RNA binding proteins (RBPs) are crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!