Unlabelled: Trauma is a leading cause of death worldwide with 5.8 million deaths occurring yearly. Almost 40% of trauma deaths are due to bleeding and occur in the first few hours after injury. Of the remaining severely injured patients up to 25% develop a dysregulated immune response leading to multiple organ dysfunction syndrome (MODS). Despite improvements in trauma care, the morbidity and mortality of this condition remains very high. Massive traumatic injury can overwhelm endogenous homeostatic mechanisms even with prompt treatment. The underlying mechanisms driving MODS are also not fully elucidated. As a result, successful therapies for trauma-related MODS are lacking. Trauma causes tissue damage that releases a large number of endogenous damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs released in trauma, such as mitochondrial DNA (mtDNA), could help to explain part of the immune response in trauma given the structural similarities between mitochondria and bacteria. MtDNA, like bacterial DNA, contains an abundance of highly stimulatory unmethylated CpG DNA motifs that signal through toll-like receptor-9 to produce inflammation. MtDNA has been shown to be highly damaging when injected into healthy animals causing acute organ injury to develop. Elevated circulating levels of mtDNA have been reported in trauma patients but an association with clinically meaningful outcomes has not been established in a large cohort. We aimed to determine whether mtDNA released after clinical trauma hemorrhage is sufficient for the development of MODS. Secondly, we aimed to determine the extent of mtDNA release with varying degrees of tissue injury and hemorrhagic shock in a clinically relevant rodent model. Our final aim was to determine whether neutralizing mtDNA with the nucleic acid scavenging polymer, hexadimethrine bromide (HDMBr), at a clinically relevant time point would reduce the severity of organ injury in this model.

Conclusions: We have shown that the release of mtDNA is sufficient for the development of multiple organ injury. MtDNA concentrations likely peak at different points in the early postinjury phase dependent on the degree of isolated trauma vs combined trauma and hemorrhagic shock. HDMBr scavenging of circulating mtDNA (and nuclear DNA, nDNA) is associated with rescue from severe multiple organ injury in the animal model. This suggests that HDMBr could have utility in rescue from human trauma-induced MODS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951958PMC
http://dx.doi.org/10.3389/fimmu.2018.00891DOI Listing

Publication Analysis

Top Keywords

multiple organ
16
organ injury
16
trauma
11
mtdna
10
scavenging circulating
8
mitochondrial dna
8
organ dysfunction
8
trauma hemorrhage
8
immune response
8
aimed determine
8

Similar Publications

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

The Gut in Critical Illness.

Curr Gastroenterol Rep

December 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.

Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.

Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Comparative Effectiveness of Outpatient COVID-19 Therapies in Solid Organ Transplant Recipients.

Transpl Infect Dis

January 2025

Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Background: Multiple outpatient therapies have been developed for COVID-19 in high-risk individuals, but solid organ transplant (SOT) recipients were not well represented in controlled clinical trials. To date, few comparative studies have evaluated outcomes between outpatient therapies in this population.

Methods: We performed a retrospective cohort study using de-identified administrative claims data from OptumLabs Data Warehouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!