We investigated the impact of temperature on the microbial turnover of organic matter (OM) in a hydrothermal vent system in Guaymas Basin, by calculating microbial bio- and necromass turnover times based on the culture-independent D:L-amino acid model. Sediments were recovered from two stations near hydrothermal mounds (<74°C) and from one cold station (<9°C). Cell abundance at the two hydrothermal stations dropped from 10 to 10 cells cm within ∼5 m of sediment depth resulting in a 100-fold lower cell number at this depth than at the cold site where numbers remained constant at 10 cells cm throughout the recovered sediment. There were strong indications that the drop in cell abundance was controlled by decreasing OM quality. The quality of the sedimentary OM was determined by the diagenetic indicators %TC (percentage of total organic carbon present as amino acid carbon), %TN (percentage of total nitrogen present as amino acid nitrogen), aspartic acid:β-alanine ratios, and glutamic acid:γ-amino butyric acid ratios. All parameters indicated that the OM became progressively degraded with increasing sediment depth, and the OM in the hydrothermal sediment was more degraded than in the uniformly cold sediment. Nonetheless, the small community of microorganisms in the hydrothermal sediment demonstrated short turnover times. The modeled turnover times of microbial bio- and necromass in the hydrothermal sediments were notably faster (biomass: days to months; necromass: up to a few hundred years) than in the cold sediments (biomass: tens of years; necromass: thousands of years), suggesting that temperature has a significant influence on the microbial turnover rates. We suggest that short biomass turnover times are necessary for maintance of essential cell funtions and to overcome potential damage caused by the increased temperature.The reduced OM quality at the hyrothemal sites might thus only allow for a small population size of microorganisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963217PMC
http://dx.doi.org/10.3389/fmicb.2018.00967DOI Listing

Publication Analysis

Top Keywords

dl-amino acid
8
microbial turnover
8
guaymas basin
8
acid modeling
4
modeling reveals
4
reveals fast
4
fast microbial
4
turnover days
4
days months
4
months subsurface
4

Similar Publications

TLC is used globally, yet less attention has been paid to TLC (in enantioseparation) despite its advantages. The present paper describes/reviews successfully practiced direct approaches of 'chiral additive in achiral stationary phase' (as an application of in-home thought out, prepared, tested, and modified chiral stationary phase), 'pre-mixing of chiral reagent with the enantiomeric mixture' (an approach using both achiral phases during chromatographic separation) and 'chiral additive in mobile phase', and chiral ligand exchange for enantioseparation of DL-amino acids, their derivatives, and some active pharmaceutical ingredients. It provided efficient enantioseparation, quantitative determination, and isolation of native forms via in-situ formation of non-covalent diastereomeric pair.

View Article and Find Full Text PDF

Simultaneous determination of free DL-amino acids in human hair with a novel DBD-M-Pro derivatization by UHPLC-HRMS: An application in diabetes patients.

J Pharm Biomed Anal

December 2024

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Department of Orthopaedics, Yanbian University Hospital, Yanji, Jilin Province 133002, China. Electronic address:

Human hair is a non-invasive biological sample that is easy to collect and store and can reflect long-term body health. However, the correlation between DL-amino acids and metabolic diseases in hair samples has not been studied. Therefore, we propose a novel UHPLC-HRMS method for analyzing seven free chiral amino acids (DL-Thr, DL-Glu, DL-Ala, DL-Val, DL-Pro, DL-Leu, and DL-Phe) simultaneously in hair samples by derivatization of chiral probe 4-(N,N-dmethylaminosulfonyl)-2,1,3-benzoxadiazole-trans-2-methyl-L-proline (DBD-M-Pro) labeled with targeted amino functional groups.

View Article and Find Full Text PDF

Simultaneous analysis of DL-Amino acids in foods and beverages using a highly sensitive chiral resolution labeling reagent.

J Chromatogr B Analyt Technol Biomed Life Sci

August 2024

Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan. Electronic address:

Amino acids with various functions are abundant in living organisms and foods. Recent advances in analytical technology show that trace amounts of D-amino acids exist in living organisms and foods. In addition, studies show that these amino acids are involved in various physiological functions that differ from those of L-amino acids.

View Article and Find Full Text PDF

Urinary D-amino acid profiles in cats with chronic kidney disease.

J Vet Med Sci

August 2024

Analytical Science Research Laboratories, Kao Corporation, Wakayama, Japan.

Chronic kidney disease (CKD) is highly prevalent in domestic cats. This study aimed to compare urinary D-amino acid levels between control and CKD-afflicted cats as a novel noninvasive method for assessing CKD. Cats were divided into control and CKD stage II groups in accordance with the International Renal Interest Society guidelines.

View Article and Find Full Text PDF

D-Amino acids, which are present in small amounts in living organisms, are responsible for a variety of physiological functions. Some bioactive/biomolecular peptides also contain D-amino acids in their sequences; such peptides express different functions than peptides composed only of L-form amino acids. Among the 20 amino acids that make up proteins, threonine (Thr) and isoleucine (Ile) have two chiral carbons and thus have two enantiomers and diastereomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!