Monomers and dimers of bovine heart cytochrome c oxidase (EC 1.9.3.1.) were separated by gel filtration chromatography on Ultrogel AcA 34 or by sucrose gradient centrifugation. Factors influencing the interconversion of the two aggregation states of this enzyme were analyzed. At very low ionic strength, in the presence of dodecyl maltoside, monomers were the main species. Salts appeared to stabilize the dimeric form, divalent cations being more efficient than monovalent. High enzyme concentrations favoured the formation of dimers, also at low ionic strength. The type of detergent had a strong influence on the monomer-dimer interconversion; in Triton X-100 and dodecyl maltoside (at high ionic strength) cytochrome c oxidase was homogenously dispersed in its dimeric form, while in Tween-80 gel filtration showed only large particles eluting in the void volume. In cholate monomers and aggregates were observed but no dimers. The aggregation state had an influence on the steady state kinetics of the ferrocytochrome c oxidase activity. Monomers showed linear Eadie-Hofstee plots, whilst the dimeric and aggregated enzyme gave nonlinear Eadie-Hofstee plots. Ionic strength, enzyme concentration and type of detergent were affecting the enzyme's kinetics in a way consistent with the molecular form obtained by the gel filtration or sedimentation analysis. The data support a negative cooperative mechanism for the interaction of cytochrome c with the dimeric enzyme, as proposed earlier (K.A. Nałecz et al., (1983) Biochem. Biophys. Res. Commun., 114, 822-828).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0300-9084(85)80237-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!