Cell-Derived Exosomes for Cardiovascular Therapies: Y (Not) RNAs?

Hypertension

From the Department of Medical Surgical Sciences and Biotechnologies, La Sapienza University of Rome, Italy (I.C., G.F.).

Published: August 2018

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10684DOI Listing

Publication Analysis

Top Keywords

cell-derived exosomes
4
exosomes cardiovascular
4
cardiovascular therapies
4
therapies rnas?
4
cell-derived
1
cardiovascular
1
therapies
1
rnas?
1

Similar Publications

Mechanism of hsa_circ_0069443 promoting early pregnancy loss through ALKBH5/FN1 axis in trophoblast cells.

iScience

January 2025

Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.

Studies have shown that circRNAs play an important regulatory role in trophoblast function and embryonic development. Based on sequencing and functional experiments, we found that hsa_circ_0069443 can regulate the function of trophoblast cells, and its presence is found in the exosomes secreted by trophoblast cells. It is known that exosomes mediate the interaction between the uterus and embryo, which is crucial for successful pregnancy.

View Article and Find Full Text PDF

Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy.

Mater Today Bio

February 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.

View Article and Find Full Text PDF

Neutrophil-derived apoptotic body membranes-fused exosomes targeting treatment for myocardial infarction.

Regen Biomater

December 2024

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215006, P. R. China.

Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.

View Article and Find Full Text PDF

Objectives: Melanoma is a highly aggressive and metastatic form of cancer, and the role of exosomal microRNAs (miRNAs) in its progression remains largely unexplored. This study aimed to investigate the effects of melanoma cell-derived exosomal miR-424-5p on angiogenesis and its underlying mechanisms.

Methods: Exosomes were isolated from melanoma cell lines A375 and A2058, and their effects on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were examined.

View Article and Find Full Text PDF

An Integrating Microfluidic System for Concentration Gradient Generation of Exosomes and Exosome-Assisted Single-Cell-Derived Tumor-Sphere Formation.

ACS Sens

January 2025

School of Basic Medical Science, Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an 710021, China.

To enhance exploration on tumor stem-like cells (TSCs) without altering their cellular biological characteristics, researchers advocate for application of single-cell-derived tumor-spheres (STSs). TSCs are regulated by their surrounding microenvironment, making it crucial to simulate a tumor microenvironment to facilitate STS formation. Recently, exosomes that originated from the tumor microenvironment have emerged as a promising approach for mimicking the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!