Approximately 20%-30% of schizophrenia patients are resistant to current standard pharmacotherapies. Recent schizophrenia research aims to identify specific pathophysiological abnormalities and novel targets in the disease, with the goals of identifying at-risk individuals, facilitating diagnosis, prompting early and personalized interventions, and helping predict response to treatment. Metabolomics involves the systematic study of the profile of biochemical alterations early in the course of a given disorder. Major aspects of the schizophrenia metabolome have been characterized, uncovering potential selective biomarkers for the disease that may change how the disorder is diagnosed, and how patients are stratified and treated. This review focuses on the most common metabolomic fingerprints of the different pathways involved in the pathophysiology of schizophrenia, and the potential development of novel metabolomic-related pharmacotherapies for improved treatment of schizophrenia and other related idiopathic psychotic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1092852918000962 | DOI Listing |
Neurochem Res
January 2025
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr.
View Article and Find Full Text PDFInt J Epidemiol
December 2024
National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.
Background: Deaths in Australia and other high-income countries increasingly involve multiple conditions. However, key burden of disease measures typically only use the underlying cause of death (UC). We quantified sex and cause-specific years of life lost (YLL) based on UC compared with a method integrating multiple causes of death.
View Article and Find Full Text PDFPsychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.
View Article and Find Full Text PDFPhosphodiesterase 4B (PDE4B) plays a critical role in cAMP hydrolysis and is highly expressed in brain regions associated with neuroinflammation and central nervous system (CNS) disorders. Selective PDE4B radioligands hold significant potential for elucidating disease mechanisms, such as those in Parkinson's disease and schizophrenia, and enabling target occupancy measurements. In this study, we developed [ F]P4B-2412, a novel PDE4B-selective radioligand, and evaluated its utility for positron emission tomography imaging (PET).
View Article and Find Full Text PDFBackground And Hypothesis: We have reported previously a reduction in superior temporal gyrus (STG) activation and in auditory verbal hallucinations (AHs) after real-time fMRI neurofeedback (NFB) in schizophrenia patients with AHs.
Study Design: With this randomized, participant-blinded, sham-controlled trial, we expanded our previous results. Specifically, we examined neurofeedback effects from the STG, an area associated with auditory hallucinations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!