Background: Translational research to develop pharmaceutical and surgical treatments for pterygium requires a reliable and easy to produce animal model. Extracellular matrix and fibroblast are important components of pterygium. The aim of this study was to analyze the effect of the subconjunctival injection of fibroblast cells (NIH3T3 cell line) and exogenous extracellular matrix in rabbits in producing a pterygium-like lesion.
Methods: Six 3-month-old white New Zealand rabbits were injected with 20,000 NIH3T3 cells and 5 µL of Matrigel in the right conjunctiva, and with only 5 µL of Matrigel in the left conjunctiva. The eyes were photographed under a magnification of 16× using a 12-megapixel digital camera attached to the microscope on day 1, 3 and 7. Conjunctival vascularization was measured by analyzing images to measure red pixel saturation. Area of corneal and conjunctival fibrovascular tissue formation on the site of injection was assessed by analyzing the images on day 3 and 7 using area measurement software. Histopathologic characteristics were determined in the rabbit tissues and compared with a human primary pterygium.
Results: The two treatments promoted growth of conjunctival fibrovascular tissue at day 7. The red pixel saturation and area of fibrovascular tissue developed was significantly higher in right eyes (p < 0.05). Tissues from both treatments showed neovascularization in lesser extent to that observed in human pterygium. Acanthosis, stromal inflammation, and edema were found in tissues of both treatments. No elastosis was found in either treatment.
Conclusions: Matrigel alone or in combination with NIH3T3 cells injected into the rabbits' conjunctiva can promote tissue growth with characteristics of human pterygium, including neovascularization, acanthosis, stromal inflammation, and edema. The combination of Matrigel with NIH3T3 cells seems to have an additive effect on the size and redness of the pterygium-like tissue developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987467 | PMC |
http://dx.doi.org/10.1186/s40659-018-0165-8 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Curr Cardiol Rep
January 2025
Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.
View Article and Find Full Text PDFCell Biosci
January 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!