Background: DNA methylation has been evidenced as a potential epigenetic mechanism related to various candidate genes to development of obesity. Therefore, the objective of this study was to evaluate the DNA methylation levels of the ADRB3 gene by body mass index (BMI) in a representative adult population, besides characterizing this population as to the lipid profile, oxidative stress and food intake.

Methods: This was a cross-sectional population-based study, involving 262 adults aged 20-59 years, of both genders, representative of the East and West regions of the municipality of João Pessoa, Paraíba state, Brazil, in that were evaluated lifestyle variables and performed nutritional, biochemical evaluation and DNA methylation levels of the ADRB3 gene using high resolution melting method. The relationship between the study variables was performed using analyses of variance and multiple regression models. All results were obtained using the software R, 3.3.2.

Results: From the stratification of categories BMI, was observed a difference in the average variables values of age, waist-to-height ratio, waist-to-hip ratio, waist circumference, triglycerides and intake of trans fat, which occurred more frequently between the categories "eutrophic" and "obesity". From the multiple regression analysis in the group of eutrophic adults, it was observed a negative relationship between methylation levels of the ADRB3 gene with serum levels of folic acid. However, no significant relation was observed among lipid profile, oxidative stress and food intake in individuals distributed in the three categories of BMI.

Conclusions: A negative relationship was demonstrated between methylation levels of the ADRB3 gene in eutrophic adults individuals with serum levels of folic acid, as well as with the independent gender of BMI, however, was not observed relation with lipid profile, oxidative stress and variables of food intake. Regarding the absence of relationship with methylation levels of the ADRB3 gene in the categories of overweight, mild and moderate obesity, the answer probably lies in the insufficient amount of body fat to initiate inflammatory processes and oxidative stress with a direct impact on methylation levels, what is differently is found most of the times in exacerbated levels in severe obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987450PMC
http://dx.doi.org/10.1186/s12967-018-1529-0DOI Listing

Publication Analysis

Top Keywords

methylation levels
28
levels adrb3
24
adrb3 gene
24
dna methylation
16
oxidative stress
16
eutrophic adults
12
lipid profile
12
profile oxidative
12
levels
10
methylation
8

Similar Publications

Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons.

View Article and Find Full Text PDF

Exhaled breath metabolites reveal postmenopausal gut-bone cross-talk and non-invasive markers for osteoporosis.

Commun Med (Lond)

December 2024

Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.

Background: Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens.

Methods: In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis.

View Article and Find Full Text PDF

Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.

View Article and Find Full Text PDF

The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.

Plant Physiol Biochem

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China. Electronic address:

Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S.

View Article and Find Full Text PDF

Cytidine analogs in plant epigenetic research and beyond.

J Exp Bot

December 2024

Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.

Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!