Prucalopride inhibits the glioma cells proliferation and induces autophagy via AKT-mTOR pathway.

BMC Neurol

Department of Medical Instruments, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157009, People's Republic of China.

Published: June 2018

Backgrounds: Glioma is the most fatal primary brain glioma in central nervous system mainly attributed to its high invasion. Prucalopride, a Serotonin-4 (5-HT4) receptor agonist, has been reported to regulate neurodevelopment. This study aimed to investigate the influence of the Prucalopride on glioma cells and unveil underlying mechanism.

Methods: In this study, glioma cells proliferation was evaluated by Cell counting kit-8 (CCK8). Wound healing and transwell assay were used to test cellular migration and invasion. Flow cytometry was utilized to determine cellular apoptosis rate. Apoptosis related markers, autophagy markers, and protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway key molecules were detected using western blot assay.

Results: As a result, the proliferation, migration and invasiveness of glioma cells were impaired by Prucalopride treatment, the apoptosis rate of glioma cells was enhanced by Prucalopride stimulation, accompanied by the increased pro-apoptosis proteins Bax and Cleaved caspase-3 and decreased anti-apoptosis protein Bcl-2. Prucalopride significantly promoted autophagy by increased expression level of Beclin 1 and LC3-II, while decreased expression level of p62. Prucalopride administration resulted in obvious inhibitions of key molecules of AKT-mTOR pathway, including phosphorylated- (p-) AKT, p-mTOR and phosphorylated-ribosomal p70S6 kinase (p-P70S6K).

Conclusions: Taking together, these results indicate that Prucalopride may be likely to play an anti-tumor role in glioma cells, which suggests potential implications for glioma promising therapy alternation in the further clinics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985575PMC
http://dx.doi.org/10.1186/s12883-018-1083-7DOI Listing

Publication Analysis

Top Keywords

glioma cells
24
glioma
9
prucalopride
8
cells proliferation
8
akt-mtor pathway
8
apoptosis rate
8
key molecules
8
expression level
8
cells
6
prucalopride inhibits
4

Similar Publications

Objective: This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy.

Methods: Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO).

View Article and Find Full Text PDF

Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.

View Article and Find Full Text PDF

Identifying new substances that could potentially be used for tumor therapy and the precise analysis of their spectrum of action requires models that are as similar as possible to the tumor present in the patient. Traditionally, two-dimensional (2D) cell cultures are used. However, these only resemble solid tumors to a limited extent.

View Article and Find Full Text PDF

Despite the growing interest in Phosphoenolpyruvate carboxykinase 2 (PCK2) as a potential biomarker in cancer research, studies on its clinical relevance and biological processes in glioblastoma are still unexplored. Three main glioma cohorts (TCGA, CGGA, Rembrandt) were extracted to exploit the association between PCK2 expression and clinical relevance through Kaplan-Meier survival analysis, univariate and multivariate cox regression analysis. Immunohistochemistry was used to detect PCK2 expression in glioma samples.

View Article and Find Full Text PDF

[Distribution characteristics and proteomic analysis of glioma-associated oncogene homolog1 positive cells during mouse orthodontic tooth movement].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Xi'an710032, China.

To explore the distribution characteristics of glioma-associated oncogene homolog 1 (Gli1) positive cells during orthodontic tooth movement process and conduct a proteomic analysis of these cells. Forty Gli1-LacZ transgenic mice were used to establish an in orthodontic tooth movement (OTM) model for labeling Gli1 positive cells in Gli1-LacZ transgenic mice (OTM group) and an unforced control group, with tooth movement distance measured using micro-CT. The spatial relationship and distribution characteristics of Gli1 positive cells and H-type vessels of CD31 and endomucin (EMCN) in periodontal tissues were detected by immunofluorescence staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!