Background: Liver cancer is the fifth most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Among the liver cancers, hepatocellular carcinoma has been reported to be responsible for 85-90% of primary liver cancer and it is the second most common cause of cancer mortality with 700,000 deaths documented annually. The major risk factors of HCC include chronic infections with the hepatitis B (HBV) or hepatitis C (HCV) virus, chronic liver diseases, alcoholism as well as dietary carcinogens, such as aflatoxins. Highest incidence rates are estimated to occur in Asia and Africa.
Objective: The effectiveness of current man-made agents in treating chronic liver disease is not satisfactory and they have uninvited side effects. Herbal medicines are extensively used all over the world; however, there is still a vast gap in their acceptance by the scientific community. Plants are rich in secondary metabolites and phytochemicals obtained from both, dietary and non-dietary sources. Natural plant products are potent therapeutic as well as chemopreventive agents for numerous chronic diseases like cardiovascular, metabolic, neurodegenerative and neoplastic diseases.
Results: Dietary phytochemicals such as curcumin, resveratrol, quercetin, silibinin, N-trans-feruloyl octopamine, lycopene, emodin, caffeine, urolithin A and Phloretin have been found to be useful for the treatment of HCC and other diseases. According to recent reports 60% of the anticancer medication in current use has been obtained from natural sources.
Conclusion: Thus, derivatives from plants have played an essential role in cancer prevention due to their pleiotropic abilities to scavenge free radicals, inhibit cell growth and induce apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520618666180604085612 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, South Korea.
Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.
View Article and Find Full Text PDFAmbio
January 2025
School of Forest Sciences, University of Eastern Finland, Joensuu, Finland.
Trees offer multiple benefits, including impacts on physical and mental health. In this interdisciplinary study, we explored the relationships humans develop with specific favourite trees based on our survey data (n = 158) collected in the Netherlands. Here, we examined action possibilities (affordances) provided by trees, including immaterial actions, such as memorisation or the enjoyment of beauty.
View Article and Find Full Text PDFPlanta
January 2025
School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!