Background: The Low-Density Lipoprotein (LDL) Receptor (LDL-R) is a transmembrane protein playing a crucial role in effective lipid homeostasis. Various therapeutic agents have been used in the management of dyslipidemias, however, the outcome of therapeutic target is debated.

Objective: The aim of this review is to summarize and fully understand the current concept regarding LDL-R and its molecular properties, metabolic pathway, factors affecting LDL-R activity and all available pharmacological interventions. Additionally, non-lipid related properties of LDL-R are also referred.

Methods: Literature from the PubMed database was extracted to identify papers between 1984 to 2017 regarding LDL-R and therapeutic agents on dyslipidemia management.

Results: We analyzed basic data regarding agents associated with LDL-R (Sterol Regulating Element-Binding Proteins - SREBPs, Protein ARH, IDOL, Thyroid Hormones, Haematologic Disorders, Protein convertase subtilisin kexintype 9 - PCSK-9, ApoC-III) as well as non-lipid related properties of LDL-R, while all relevant (common and novel) pharmacological interventions (statins, fibrates, cholesterol absorption inhibitors, bile acid sequestrants and PCSK- 9) are also referred.

Conclusion: LDL-R and its molecular properties are involved in lipid homeostasis, so potentially sets the therapeutic goals in cardiovascular patients, which is usually debated. Further research is needed in order to fully understand its properties, as well as to find the potential pharmacological interventions that could be beneficial in cholesterol homeostasis and various morbidities in order to reach the most appropriate therapeutic goal.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867325666180604114819DOI Listing

Publication Analysis

Top Keywords

molecular properties
12
pharmacological interventions
12
ldl-r
8
lipid homeostasis
8
therapeutic agents
8
fully understand
8
ldl-r molecular
8
non-lipid properties
8
properties ldl-r
8
properties
6

Similar Publications

Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.

View Article and Find Full Text PDF

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Oncolytic therapy, inducing cell death via cell membrane lysis, holds considerable promise in cancer treatment. However, achieving precise control over the structure and function of oncolytic materials for highly selective oncolytic therapy is a key challenge in the context of the subtle differences between tumor and normal tissues/cells. Herein, we report the development of pH-ultrasensitive oncolytic polyesters (pOPs) with an alternating sequence of ionizable and hydrophobic groups.

View Article and Find Full Text PDF

Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!