As minimally invasive surgical techniques progress, the demand for efficient, reliable methods for vascular ligation and tissue closure becomes pronounced. The surgical advantages of energy-based vessel sealing exceed those of traditional, compression-based ligatures in procedures sensitive to duration, foreign bodies, and recovery time alike. Although the use of energy-based devices to seal or transect vasculature and connective tissue bundles is widespread, the breadth of heating strategies and energy dosimetry used across devices underscores an uncertainty as to the molecular nature of the sealing mechanism and induced tissue effect. Furthermore, energy-based techniques exhibit promise for the closure and functional repair of soft and connective tissues in the nervous, enteral, and dermal tissue domains. A constitutive theory of molecular bonding forces that arise in response to supraphysiological temperatures is required in order to optimize and progress the use of energy-based tissue fusion. While rapid tissue bonding has been suggested to arise from dehydration, dipole interactions, molecular cross-links, or the coagulation of cellular proteins, long-term functional tissue repair across fusion boundaries requires that the reaction to thermal damage be tailored to catalyze the onset of biological healing and remodeling. In this review, we compile and contrast findings from published thermal fusion research in an effort to encourage a molecular approach to characterization of the prevalent and promising energy-based tissue bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-bioeng-071516-044702 | DOI Listing |
J Cosmet Dermatol
January 2025
Clinical Pharmacology Consultant in Aesthetic Medicine, Milan, Italy.
Background: Postsurgical atrophic scars tend to respond poorly to treatments, especially non-energy-based ones. Hydrophilic PN HPT (Polynucleotides High Purification Technology) injected intradermally is a non-energy-based option with an immediate volume-enhancing effect that indirectly improves the fibroblast synthesis of collagen and extracellular matrix. The PN HPT ingredient has the further benefit of a dermal "priming" effect that enhances the efficacy of other scar treatments.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
Power Electronics Research Centre, School of Engineering, University of Galway, Galway, Ireland.
Purpose: Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.
View Article and Find Full Text PDFAnn Plast Surg
February 2025
From the Swanson Center, Leawood, KS.
Background: Electromagnetic treatments have recently been combined with radiofrequency to reduce the fat layer and simultaneously increase muscle thickness. Studies report treatment efficacy, using photographs and imaging methods.
Methods: A literature review was conducted.
Neural Netw
December 2024
Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:
Brain magnetic resonance imaging (MRI) has been extensively employed across clinical and research fields, but often exhibits sensitivity to site effects arising from non-biological variations such as differences in field strength and scanner vendors. Numerous retrospective MRI harmonization techniques have demonstrated encouraging outcomes in reducing the site effects at image level. However, existing methods generally suffer from high computational requirements and limited generalizability, restricting their applicability to unseen MRIs.
View Article and Find Full Text PDFLasers Surg Med
December 2024
Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Objective: Physical treatment modalities, such as ablative fractional laser (AFL), electrocautery, and cryotherapy, are extensively used in the field of dermatology. This study aimed to characterize the short-term innate and adaptive immune responses induced by AFL compared with heat- and cold-based procedures.
Materials And Methods: Innate (CD11bLy6G neutrophils) and adaptive (CD8CD3 T cells) immune cell infiltration and histopathological changes were examined in murine skin on Days 1 and 7, following AFL, monopolar-electrocautery (RF), thermocautery, and cryotherapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!