Reaction time for trimolecular reactions in compartment-based reaction-diffusion models.

J Chem Phys

Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA.

Published: May 2018

Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5024927DOI Listing

Publication Analysis

Top Keywords

reaction time
8
trimolecular reactions
8
models trimolecular
8
boundary conditions
8
time trimolecular
4
reactions compartment-based
4
compartment-based reaction-diffusion
4
reaction-diffusion models
4
trimolecular reaction
4
reaction models
4

Similar Publications

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

Investigation the CMP process of 6 H-SiC in HO solution with ReaxFF molecular dynamics simulation.

Sci Rep

January 2025

College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.

To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

BPV1, BPV2, BPV13, and BPV14 are all genotypes of bovine delta papillomaviruses (δPV), of which the first three cause infections in horses and are associated with equine sarcoids. However, BPV14 infection has never been reported in equine species. In this study, we examined 58 fresh and thawed commercial semen samples from healthy stallions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!