Embryos of the poeciliid Heterandria formosa develop to term in the ovarian follicle in which they establish a placental association with the follicle wall (follicular placenta) and undergo a 3,900% increase in embryonic dry weight. This study does not confirm the belief that the embryonic component of the follicular placenta is formed only by the surfaces of the pericardial and yolk sacs; early in development the entire embryonic surface functions in absorption. The pericardial sac expands to form a hood-like structure that covers the head of the embryo and together with the yolk sac is extensively vascularized by a portal plexus derived from the vitelline circulation. The hood-like pericardial sac is considered to be a pericardial amnion-serosa. Scanning and transmission electron microscopy reveal that during the early and middle phases of development (Tavolga's stages 10-18 for Xiphophorus maculatus) the entire embryo is covered by a bilaminar epithelium whose apical surface is characterized by numerous, elongate microvilli and coated pits and vesicles. Electron-lucent vesicles in the apical cytoplasm appear to be endosomes while a heterogeneous group of dense-staining vesicles display many features characteristic of lysosomes. As in the larvae of other teleosts, cells resembling chloride cells are also present in the surface epithelium. Endothelial cells of the portal plexus lie directly beneath the surface epithelium of the pericardial and yolk sacs and possess numerous transcytotic vesicles. The microvillous surface epithelium becomes restricted to the pericardial and yolk sacs late in development when elsewhere on the embryo the non-absorptive epidermis differentiates. We postulate that before the definitive epidermis differentiates, the entire embryonic surface constitutes the embryonic component of the follicular placenta. The absorptive surface epithelium appears to be the principle embryonic adaptation for maternal-embryonic nutrient uptake in H. formosa, suggesting that a change in the normal differentiation of the surface epithelium was of primary importance to the acquisition of matrotrophy in this species. In other species of viviparous poeciliid fishes in which there is little or no transfer of maternal nutrients, the embryonic surface epithelium is of the non-absorptive type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.1052090304 | DOI Listing |
Antibodies (Basel)
December 2024
Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.
Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.
View Article and Find Full Text PDFIndian J Ophthalmol
January 2025
Department of Ophthalmology, Université Paris Cité, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
Purpose: This study aims to evaluate the efficacy of various tomographic indices, both established and novel, in predicting endothelial decompensation leading to either spontaneous corneal transplantation or transplantation following cataract surgery in patients with Fuchs endothelial corneal dystrophy (FECD).
Methods: In this cross-sectional, retrospective study, we reviewed the files of 93 eyes from 54 FECD patients undergoing regular follow-up. We recorded clinical metrics such as morning visual disturbance (MVD) and corrected distance visual acuity.
J Morphol
January 2025
Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
The skin of the Komodo dragon (Varanus komodoensis) is covered by a form of armour formed mainly of scales, which often co-occur with osteoderms. Scales are keratinized, non-mineralized structures in the uppermost layer of the epidermis that are in contact with each other to form a system in which individual scales are isolated from each other by a softer skin fold zone. In the Varanus, the surface of the scales is flat and smooth (thoracic limb, abdomen, and tail areas), domed and smooth (head area) or domed with conical ornamentation (dorsal surface, pelvic limb-dorsal surface areas).
View Article and Find Full Text PDFBiomed Rep
February 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Cholangiocarcinoma (CCA) is an aggressive cancer of the bile duct epithelium. Anthocyanins are water-soluble flavonoids that contribute to the color of fruits and pigmented rice. Black rice bran is rich in anthocyanin pigments and exhibits certain health benefits, including anticancer activity; however, the effect of black rice bran-derived anthocyanins (BBR-M-10) on CCA progression remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!