The mechanical properties of Ti-6Al-4V alloy are sensitive to strain rate and temperature load. The finite element simulation results of high-speed machining Ti-6Al-4V alloy depend on the accurate description of dynamic deformation. However, it is hard to describe the flow stress behavior in current constitutive models in a complex high-speed machining process for Ti-6Al-4V alloy. In this paper, the stress-strain curves of Ti-6Al-4V alloy under the wide ranges of strain rate and temperature are obtained by high-velocity uniaxial impact tests. The apparent coupling between temperature and strain is observed, which proves that the temperature is dependent on a hardening effect for Ti-6Al-4V alloy. A function describing the coupling between temperature and strain is then introduced into the modification for the original Johnson-Cook (JC) constitutive model. The maximum deviation between the predicted data from using the proposed modified JC constitutive model and experimental data is reduced from 10.43% to 4.19%. It can be concluded that the modified JC constitutive model is more suitable to describe the temperature-dependent hardening effect, which provides strong support for accurate finite element simulation of high-speed machining Ti-6Al-4V alloy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025304PMC
http://dx.doi.org/10.3390/ma11060938DOI Listing

Publication Analysis

Top Keywords

ti-6al-4v alloy
24
constitutive model
16
strain rate
12
rate temperature
12
high-speed machining
12
stress-strain curves
8
wide ranges
8
ranges strain
8
finite element
8
element simulation
8

Similar Publications

Load-bearing capacity of an experimental dental implant made of Nb-1Zr.

J Mater Sci Mater Med

January 2025

Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.

Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.

View Article and Find Full Text PDF

This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature.

View Article and Find Full Text PDF

Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.

View Article and Find Full Text PDF

This paper presents the results of research on the kinetics of transformations in the two-phase (α + β) Ti-6Al-4V alloy. The transformation start and end temperatures during heating at different rates were determined using a dilatometer. A modified dilatometer was employed, equipped with an acoustic emission measurement apparatus and software enabling the assessment of sample dimensional changes during heating and cooling.

View Article and Find Full Text PDF

Enhancement of Osseointegration via Endogenous Electric Field by Regulating the Charge Microenvironments around Implants.

Adv Healthc Mater

January 2025

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an, 710004, China.

The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!