Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5021317 | DOI Listing |
Chemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India. Electronic address:
Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2025
Department of Chemistry `Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
Hen egg-white lysozyme (HEWL) is a small polycationic protein which is highly soluble and stable. This has led to it becoming a `molecular laboratory' where chemical biological operations and structural techniques are tested. To date, HEWL accounts for 1233 PDB entries, roughly 0.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
The Ru(IV,IV), Ru(III,IV), and Ru(III,III) complexes with the doubly oxido- and/or hydroxido-bridged diamond core {Ru(μ-O(H))}, bridged by an η:η:μ-type bidentate sulfato ligand, [{Ru(L)}(μ-O)(μ-OSO)] ( = 1: [III,IV]; = 2: [IV,IV]), [{Ru(L)}(μ-O)(μ-OH)(μ-OSO)] ([III,IV_1H]), and [{Ru(L)}(μ-OH)(μ-OSO)] ([III,III_2H]) (L = ethylbis(2-pyridylmethyl)amine), were synthesised as ClO-salts, and their crystal and electronic structures investigated. The corresponding hydrogencarbonato-bridged Ru(III,III) complex, [{Ru(L)}(μ-OH)(μ-OCOH)] ([III,III(HCO3)_2H]), was also prepared and its crystallographic and electronic structures compared to those of the sulfato-bridged system, [III,III_2H]. All the sulfato-bridged complexes isolated were confirmed in the Pourbaix diagram, wherein the redox potential was plotted as a function of pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!