Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5019879DOI Listing

Publication Analysis

Top Keywords

kev nucleon
8
stopping-power models
8
energy loss
8
beam energy
8
energy
5
cvd diamond
4
diamond detector
4
detector interdigitated
4
interdigitated electrode
4
electrode pattern
4

Similar Publications

Article Synopsis
  • The LUX-ZEPLIN (LZ) experiment is a significant scientific study using a dual-phase xenon chamber located underground in South Dakota to search for dark matter interactions.
  • The study extends existing theories to include relativistic effects, providing new constraints on the interactions between weakly interacting massive particles and nucleons based on their electric and magnetic dipole moments.
  • Results include 90% confidence level limits on the coupling strength of five different interactions, analyzed over a specific energy range, which advances our understanding in particle physics beyond previous nonrelativistic effective field theories.
View Article and Find Full Text PDF

To overcome chondrosarcoma's (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONP) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.

View Article and Find Full Text PDF
Article Synopsis
  • This study aimed to determine the relative biological effectiveness (RBE) of carbon ion beams in particle radiotherapy, focusing on different regions of the Bragg curve while comparing it to X-ray radiation.
  • SHK mice were irradiated at varying doses (0-1.5 Gy for cytogenetic damage and 6.5 Gy for survival) to assess the effects of carbon ions in the Bragg peak using different widths of the spread-out Bragg peak (SOBP).
  • Results indicated that RBE values were lower before and after the Bragg peak (0.8-0.9), but increased significantly in the low-dose region (1.1-1.7 for 10-mm SOBP), suggesting
View Article and Find Full Text PDF

The choice of appropriate physical quantities to characterize the biological effects of ionizing radiation has evolved over time coupled with advances in scientific understanding. The basic hypothesis in radiation dosimetry is that the energy deposited by ionizing radiation initiates all the consequences of exposure in a biological sample (e.g.

View Article and Find Full Text PDF

The searches for CP violating effects in diatomic molecules, such as HfF^{+} and ThO, are typically interpreted as a probe of the electron's electric dipole moment (eEDM), a new electron-nucleon interaction, and a new electron-electron interaction. However, in the case of a nonvanishing nuclear spin, a new CP violating nucleon-nucleon long-range force will also affect the measurement, providing a new interpretation of the eEDM experimental results. Here, we use the HfF^{+} eEDM search and derive a new bound on this hypothetical interaction, which is the most stringent from terrestrial experiments in the 1 eV-10 keV mass range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!