Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5019879 | DOI Listing |
Phys Rev Lett
November 2024
University of Califonia, Los Angeles, Department of Physics & Astronomy, Los Angeles, Califonia 90095-1547, USA.
Int J Mol Sci
October 2024
Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania.
To overcome chondrosarcoma's (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONP) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.
View Article and Find Full Text PDFInt J Radiat Biol
November 2024
A.A. Logunov Institute for High Energy Physics of the National Research Centre "Kurchatov Institute", Protvino, Russia.
Sci Rep
October 2024
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
The choice of appropriate physical quantities to characterize the biological effects of ionizing radiation has evolved over time coupled with advances in scientific understanding. The basic hypothesis in radiation dosimetry is that the energy deposited by ionizing radiation initiates all the consequences of exposure in a biological sample (e.g.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Physics Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
The searches for CP violating effects in diatomic molecules, such as HfF^{+} and ThO, are typically interpreted as a probe of the electron's electric dipole moment (eEDM), a new electron-nucleon interaction, and a new electron-electron interaction. However, in the case of a nonvanishing nuclear spin, a new CP violating nucleon-nucleon long-range force will also affect the measurement, providing a new interpretation of the eEDM experimental results. Here, we use the HfF^{+} eEDM search and derive a new bound on this hypothetical interaction, which is the most stringent from terrestrial experiments in the 1 eV-10 keV mass range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!