Fabrication of tunable diffraction grating by imprint lithography with photoresist mold.

Rev Sci Instrum

Department of Electronic Systems Engineering, School of Engineering, The University of Shiga Prefecture, 2500, Hassaka-cho, Hikone, Shiga 522-8533, Japan.

Published: May 2018

We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4995449DOI Listing

Publication Analysis

Top Keywords

imprint lithography
8
photoresist mold
8
first-order diffraction
8
diffraction transmittance
8
grating period
8
grating
6
fabrication tunable
4
tunable diffraction
4
diffraction grating
4
grating imprint
4

Similar Publications

The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.

View Article and Find Full Text PDF
Article Synopsis
  • Current graphene patterning techniques like electron beam lithography and nano imprint lithography are slow and less effective for larger samples, often resulting in rough edges and misalignment.
  • This study introduces hot punching as a new and efficient method for patterning CVD graphene sheets supported by a PVA layer, allowing for the creation of nanoribbons.
  • The effects of hot punching on the graphene are analyzed through various methods, showing improvements such as aligned and smoother edges, along with the occurrence of wrinkling and strain.
View Article and Find Full Text PDF

Metasurface holography, capable of fully engineering the wavefronts of light in an ultra-compact manner, has emerged as a promising route for vivid imaging, data storage, and information encryption. However, the primary manufacturing method for visible metasurface holography remains limited to the expensive and low-productivity electron-beam lithography (EBL). Here, we experimentally demonstrate the polarization-insensitive visible metasurface holography fabricated by high-throughput and low-cost nanoimprint lithography (NIL).

View Article and Find Full Text PDF

Recently, nanoimprinting has attracted a new round of attention in the industry due to the boom in demand for augmented reality/virtual reality (AR/VR), metalens and microlens, and even semiconductors. Slanted gratings have great application prospects in AR/VR displays because of their high efficiency in light coupling. UV-Nanoimprint lithography (UV-NIL) has been identified as one of the most feasible routes for mass manufacture of high refractive index (RI) slanted gratings.

View Article and Find Full Text PDF

Aluminium surface work hardening enables multi-scale 3D lithography.

Nat Mater

January 2025

Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China.

Multi-scale structures are ubiquitous in biological systems. However, manufacturing man-made structures with controllable features spanning multiple length scales, particularly down to nanoscale features, is very challenging, which seriously impacts their collective properties. Here we introduce an aluminium-based three-dimensional lithography that combines sequential nano-micro-macro-imprinting and anodization of multi-scale anodic aluminium oxide templates to manufacture well-defined multi-scale structures, using various materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!