A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell membrane characteristics and microbial population distribution of MBBR and IFAS with different dissolved oxygen concentration. | LitMetric

Cell membrane characteristics and microbial population distribution of MBBR and IFAS with different dissolved oxygen concentration.

Bioresour Technol

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China. Electronic address:

Published: October 2018

This paper investigated the influences of different dissolved oxygen (DO) concentration (0.71-1.32, 2.13-3.02 and 4.31-5.16 mg/L) on cell membrane characteristics and microbial population distribution of moving biofilm reactors. Two representative reactors, i.e., moving bed biofilm reactors and integrated fixed-film activated sludge were operated. Results indicated that both DO concentration of 0.71-1.32 mg/L and 4.31-5.16 mg/L could increase membrane lipid mobile fraction (49.4%-67.4%) of the microbes, however, through prompting the synthesis of branched fatty acids and unsaturated fatty acids, respectively. For the biofilms, the abundance of Bacteroidetes decreased and Actinobacteria increased with the increase of DO levels. The lowest EfOM content and the highest microbial diversities (1.14-1.52) was observed at DO of 2.13-3.02 mg/L. Redundancy analysis showed that changes of DO levels could alter cell membrane properties and bacterial community structures, and subsequently significantly influenced effluent organic matter composition of moving biofilm reactors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.03.111DOI Listing

Publication Analysis

Top Keywords

cell membrane
12
biofilm reactors
12
membrane characteristics
8
characteristics microbial
8
microbial population
8
population distribution
8
dissolved oxygen
8
oxygen concentration
8
moving biofilm
8
fatty acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!