Previous studies suggest fish with additional copies of their genome (polyploids) underperform in suboptimal conditions and may be more susceptible to stress and disease. The objective of this study was to determine the role ploidy plays in the physiological response of white sturgeon to chronically elevated water temperatures. White sturgeon of two ploidies (8 N and 10 N) were acclimated to ambient (18 °C) and warm (22 °C) water. Bioindices of stress (plasma cortisol, glucose and lactate, total erythrocyte count, hematocrit, hemoglobin, mean erythrocyte volume, mean erythrocyte hemoglobin, and mean erythrocyte hemoglobin concentration), immunity (respiratory burst, plasma lysozyme, and total leukocyte count), and cellular metabolic capacity (lactate dehydrogenase and citrate synthase activity) were measured before and after a 6-week acclimation period. Both ploidies appear comparable in their constitutive immune and stress parameters and respond similarly to warming. Hematological indices suggest 8 N and 10 N sturgeon are similar in oxygen carrying capacity; however, differences in enzyme activity between ploidies indicate that 10 N sturgeon may have a lower cellular aerobic capacity. Our results have implications for the screening and management of ploidy on white sturgeon farms and hatcheries, as the differences between ploidies may affect 10 N sturgeon performance at elevated water temperatures. Further research is needed to elucidate the differences in inducible stress and immune responses and metabolism of white sturgeon of different ploidies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2018.05.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!