Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and a major health problem to the equine breeding industry worldwide. The G3P[12] and G14P[12] ERVA genotypes are the most prevalent in foals with diarrhea. Control and prevention strategies include vaccination of pregnant mares with an inactivated vaccine containing a prototype ERVA G3P[12] strain with limited and controversial field efficacy. Here, we performed the molecular characterization of ERVA strains circulating in central Kentucky using fecal samples collected during the 2017 foaling season. The data indicated for the first time that the G14P[12] genotype is predominant in this region in contrast to a previous serotyping study where only G3 genotype strains were reported. Overall, analysis of antigenic sites in the VP7 protein demonstrated the presence of several amino acid substitutions in the epitopes exposed on the surface including a non-conserved N-linked glycosylation site (D123N) in G14P[12] strains, while changes in antigenic sites of VP8* were minor. Also, we report the successful isolation of three ERVA G14P[12] strains which presented a high identity with other G14 strains from around the world. These may constitute ideal reference strains to comparatively study the molecular biology of G3 and G14 strains and perform vaccine efficacy studies following heterologous challenge in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2018.05.025DOI Listing

Publication Analysis

Top Keywords

molecular characterization
8
g3p[12] g14p[12]
8
equine rotavirus
8
strains
8
central kentucky
8
antigenic sites
8
g14p[12] strains
8
g14 strains
8
g14p[12]
5
erva
5

Similar Publications

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!