The genus Hypericum is one of the most popular genera in both traditional medicine and scientific platform. This study is designed to provide conceptual insights on the biological potential and chemical characterization of H. salsugineum, which is endemic to Turkey. The qualitative and quantitative phenolic content of the extracts was characterized by HPLC-ESI-MSn. Biological efficiency was investigated by enzyme inhibitory assays (cholinesterases, tyrosinase, amylase, and glucosidase) and anti-cancer efficacy tests (anti-proliferative activities with the iCELLigence technology, colony formation and wound healing scratch assays). Phenolic acids (3-O-caffeoylquinic, 5-O-caffeoylquinic, and 4-O-caffeoylquinic acids) were the predominant group in the studied extracts, although several flavonoids were also detected and quantified. The extracts exhibited good inhibitory effects on tyrosinase and glucosidase, while they had weak ability against cholinesterases and amylase. Computational studies were also performed to explain the interactions between the major phenolics and these enzymes. The extracts displayed significant anti-cancer effects on breast carcinoma cell lines. Our findings suggest that Hypericum salsugineum could be valued as a potential source of biologically-active compounds for designing novel products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986121PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197815PLOS

Publication Analysis

Top Keywords

chemical characterization
8
biological potential
8
hypericum salsugineum
8
integration vitro
4
vitro silico
4
silico perspectives
4
perspectives explain
4
explain chemical
4
characterization biological
4
potential anticancer
4

Similar Publications

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!