Alkyl amines are an important class of organic compounds in medicinal and materials chemistry. Until now very have been very few methods for the synthesis of alkyl amines by metal-catalyzed cross-coupling of alkyl electrophiles with nitrogen nucleophiles. Described here is an approach to employ tandem photoredox and copper catalysis to enable the cross-coupling of alkyl N-hydroxyphthalimide esters, readily derived from alkyl carboxylic acids, with benzophenone-derived imines. Hydrolysis of the coupling products furnish alkylated primary amines. Primary, secondary, and tertiary alkyl groups can be transferred, and the coupling tolerates a diverse set of functional groups. The method allows rapid functionalization of natural products and drugs, and can be used to expedite syntheses of pharmaceuticals from readily available chemical feedstocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201804873 | DOI Listing |
Chem Sci
January 2025
College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp)-C(sp) bond formation by using the assembly of DABCO A1 and BNepB1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, West China School of Pharmacy, Renmin Sout Road, 3rd Section, 17#, 610041, Chengdu, CHINA.
Bryostatins are a family of marine natural products that have garnered significant interests, as evidenced by over 40 clinical trials. However, their extremely low natural abundance has severely limited further research. Despite significant efforts, which have led to the total synthesis of seven bryostatin members by eight independent research groups, these complex molecules present persistent challenges for stereocontrolled, large-scale, and especially divergent synthesis.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
We present a highly efficient and versatile nickel-catalyzed protocol for the reductive cross-coupling of unactivated CFH-substituted electrophiles with a wide variety of aryl and alkenyl halides. This novel approach offers high catalytic reactivity and broad functional group compatibility, enabling late-stage fluoroalkylation of drug molecules.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!