Platinum is a precious and versatile metal and has played important roles in various fields of chemistry ranging from functional materials to anticancer drugs and catalysis. This account highlights an adventurous journey of platinum from promoting phosphorescence to catalyzing a C-H functionalization reaction, or you may consider it our research adventure from phosphorescent materials to catalysis. Interestingly, this journey is driven by a series of "bad" reactions, and of course more importantly by our curiosity about the "bad" reactions. This review will introduce to you a few classes of phosphorescent materials based on tridentate and tetradentate cycloplatinated complexes and related material design strategies, a classical example of thermodynamic and kinetic control of reactions and related platinum-mediated competing sp /sp C-H activation reactions, an unprecedented regiospecific acylation of cycloplatinated complexes, and a unique platinum-catalyzed oxidant- and additive-free C-H acylation reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.201800019 | DOI Listing |
iScience
January 2025
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.
The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.
View Article and Find Full Text PDFDalton Trans
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.
View Article and Find Full Text PDFNanoscale
January 2025
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
Long lifetime multicolor phosphorescence materials possess excellent optical properties and have important application prospects in the fields of advanced anti-counterfeiting and information encryption. However, realizing long lifetime and color-tunable room temperature phosphorescent (RTP) carbon dot (CD) materials has proved challenging. In this study, the organic precursor molecules 2-phenethylamine (2-Ph), 9-aminophenanthrene (9-Ph) and 1-aminopyrene (1-Py) with different degrees of conjugation were selected to synthesize RTP CD composites: 2-Ph@BA, 9-Ph@BA and 1-Py@BA were synthesized by mixing with a boric acid (BA) matrix under high temperature pyrolysis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.
Polymeric room temperature phosphorescence (RTP) materials have been well developed and utilized in various fields. However, their fast thermo- and moisture-quenching behavior highly limit their applications in certain harsh environments. Therefore, the preparation of materials with thermo- and moisture-resistant phosphorescence is greatly attractive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!