This work demonstrates a protocol to improve the quality of composite laminates fabricated by wet lay-up vacuum bag processes using the recently developed magnet assisted composite manufacturing (MACM) technique. In this technique, permanent magnets are utilized to apply a sufficiently high consolidation pressure during the curing stage. To enhance the intensity of the magnetic field, and thus, to increase the magnetic compaction pressure, the magnets are placed on a magnetic top plate. First, the entire procedure of preparing the composite lay-up on a magnetic bottom steel plate using the conventional wet lay-up vacuum bag process is described. Second, placement of a set of Neodymium-Iron-Boron permanent magnets, arranged in alternating polarity, on the vacuum bag is illustrated. Next, the experimental procedures to measure the magnetic compaction pressure and volume fractions of the composite constituents are presented. Finally, methods used to characterize microstructure and mechanical properties of composite laminates are discussed in detail. The results prove the effectiveness of the MACM method in improving the quality of wet lay-up vacuum bag laminates. This method does not require large capital investment for tooling or equipment and can also be used to consolidate geometrically complex composite parts by placing the magnets on a matching top mold positioned on the vacuum bag.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101221PMC
http://dx.doi.org/10.3791/57254DOI Listing

Publication Analysis

Top Keywords

vacuum bag
20
wet lay-up
12
lay-up vacuum
12
magnet assisted
8
assisted composite
8
composite manufacturing
8
high consolidation
8
consolidation pressure
8
composite laminates
8
permanent magnets
8

Similar Publications

Purpose: To evaluate the impact of patient setup errors on the dosimetry and radiobiological models of intensity-modulated radiotherapy (IMRT) for esophageal cancer.

Methods And Materials: This retrospective study with 56 patients in thermoplastic mask (TM) and vacuum bag (VB) groups utilized real setup-error (RSE) data from cone-beam CT scans to generate simulated setup-error (SSE) data following a normal distribution. The SSE data were applied to simulate all treatment fractions per patient by shifting the plan isocenter and recalculating the dose.

View Article and Find Full Text PDF

The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.

View Article and Find Full Text PDF

Stereotactic ablative radiotherapy (SABR) has become a key technique in management of spine metastases. With improved control over treatment plan dosimetry, there is a greater need for accurate patient positioning to guarantee agreement between the treatment plan and delivered dose. With serious potential complications such as fracture and myelopathy, the margins of error in SABR of the spine are minimal.

View Article and Find Full Text PDF

Impact of belly board immobilization devices and body mass factor on setup displacement using daily cone-beam CT in rectal cancer radiotherapy.

J Appl Clin Med Phys

November 2024

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

Objective: The objective of this study is to evaluate the impact of different belly board and daily changes in patient's body-mass factor (BMF) on setup displacement in radiotherapy for rectal cancer.

Methods: Twenty-five patients were immobilized using the thermoplastic mask with belly board (TM-BB), and 30 used the vacuum bag cushion with belly board (VBC-BB), performing daily cone-beam computed tomography (CBCT) scans 625 times and 750 times, respectively. Daily pretreatment CBCT scans were registered to the planned CT images for BMF change determination and setup displacement measurement.

View Article and Find Full Text PDF

The Effects of Fat Content on the Shelf-Life of Vacuum-Packed Red Meat.

Foods

November 2024

Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia.

When stored at chill temperatures, vacuum-packed (VP) lamb has a much shorter shelf-life than VP beef, primarily due to its higher pH, which could be linked to the higher fat content. The higher pH would create more favourable conditions for the growth of spoilage bacteria, resulting in a shorter shelf-life of meat. To determine the effects of fat on meat shelf-life as it relates to pH, a series of shelf-life trials at 2 °C were conducted using VP beef and lamb mince with varying fat contents (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!