Dimeric disulfide-linked peptides are formed by the regioselective oxidative folding of thiol precursors containing the CXCXCXC tetracysteine motif. Here, we investigate the general applicability of this peptide as a dimerization motif for different proteins. By recombinant DNA technology, the peptide CHWECRGCRLVC was loaded with proteins, and functional homodimers were obtained upon oxidative folding. Attached to the N-terminus of the dodecapeptide, the prokaryotic enzyme limonene epoxide hydrolase (LEH) completely forms a covalent antiparallel dimer. In a diatom expression system, the monoclonal antibody CL4 mAb is released in its functional form when its natural CPPC central parallel hinge is exchanged for the designed tetra-Cys hinge motif. To improve our understanding of the regioselectivity of tetra-disulfide formation, we provoked the formation of heterodimeric hinge peptides by mixing two different tetra-Cys peptides and characterizing the heterodimer by mass spectrometry and nuclear magnetic resonance spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.8b00475DOI Listing

Publication Analysis

Top Keywords

oxidative folding
8
hinge-type dimerization
4
dimerization proteins
4
proteins tetracysteine
4
tetracysteine peptide
4
peptide high
4
high pairing
4
pairing specificity
4
specificity dimeric
4
dimeric disulfide-linked
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!