The emergence of statistical mechanics for isolated classical systems comes about through chaotic dynamics and ergodicity. Here we review how similar questions can be answered in quantum systems. The crucial point is that individual energy eigenstates behave in many ways like a statistical ensemble. A more detailed statement of this is named the eigenstate thermalization hypothesis (ETH). The reasons for why it works in so many cases are rooted in the early work of Wigner on random matrix theory and our understanding of quantum chaos. The ETH has now been studied extensively by both analytic and numerical means, and applied to a number of physical situations ranging from black hole physics to condensed matter systems. It has recently become the focus of a number of experiments in highly isolated systems. Current theoretical work also focuses on where the ETH breaks down leading to new interesting phenomena. This review of the ETH takes a somewhat intuitive approach as to why it works and how this informs our understanding of many body quantum states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6633/aac9f1 | DOI Listing |
Phys Rev Lett
December 2024
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
View Article and Find Full Text PDFRep Prog Phys
November 2024
Marian Smoluchowski Institute of Physics, Jagiellonian University in Kraków, ul Lojasiewicza 11, Krakow, 31-007, POLAND.
Phys Rev Lett
November 2024
Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, Łojasiewicza 11, PL-30-348 Kraków, Poland.
Many-body localization (MBL) hinders the thermalization of quantum many-body systems in the presence of strong disorder. In this Letter, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain, finding the multimodal distribution of entanglement entropy in eigenstates, sub-Poissonian level statistics, and revealing a relation between operators and initial states required for examining the breakdown of thermalization in the time evolution of the system. We employ a real space renormalization group scheme to identify these phenomenological features of the MBL regime that extend beyond the standard picture of local integrals of motion relevant for systems with disorder coupled to on-site operators.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria.
Quantum scars are special eigenstates of many-body systems that evade thermalization. They were first discovered in the PXP model, a well-known effective description of Rydberg atom arrays. Despite significant theoretical efforts, the fundamental origin of PXP scars remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!