Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-performance photosensitizers are highly desired for achieving selective tumor photoablation in the field of precise cancer therapy. However, photosensitizers frequently suffer from limited tumor suppression or unavoidable tumor regrowth due to the presence of residual tumor cells surviving in phototherapy. A major challenge still remains in exploring an efficient approach to promote dramatic photoconversions of photosensitizers for maximizing the anticancer efficiency. Here, a rational design of boron dipyrromethene (BDP)-based conjugated photosensitizers (CPs) that can induce dually cooperative phototherapy upon light exposure is demonstrated. The conjugated coupling of BDP monomers into dimeric BDP (di-BDP) or trimeric BDP (tri-BDP) induces photoconversions from fluorescence to singlet-to-triplet or nonradiative transitions, together with distinctly redshifted absorption into the near-infrared region. In particular, tri-BDP within nanoparticles shows preferable conversions into both primary thermal effect and minor singlet oxygen upon near-infrared light exposure, dramatically achieving tumor photoablation without any regrowth through their cooperative anticancer efficiency caused by their dominant late apoptosis and moderate early apoptosis. This rational design of CPs can serve as a valuable paradigm for cooperative cancer phototherapy in precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201801216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!