Capturing the full range of climatic diversity in a reserve network is expected to improve the resilience of biodiversity to climate change. Therefore, a study on systematic conservation planning for climatic diversity that explicitly or implicitly hypothesizes that regions with higher climatic diversity support greater biodiversity is needed. However, little is known about the extent and generality of this hypothesis. We used the case of Yunnan, southwest China, to quantitatively classify climatic units and modeled 4 climatic diversity indicators, including the variety (VCU), rarity (RCU), endemism (ECU) of climatic units, and a composite index of climatic diversity (CICD). We used 5 schemes that reliably identify priority conservation areas (PCAs) to identify areas with high biodiversity conservation value. We then investigated the spatial relationships between the 4 climatic diversity indicators and the results of the 5 PCA schemes and assessed the representation of climatic diversity within the existing nature reserves. The CICD was the best indicator of areas with high conservation value, followed by ECU and RCU. Contrary to conventional knowledge, VCU was not positively associated with biodiversity conservation value. The rarer or more endemic climatic units tended to have higher reserve coverage than the more common units. However, only 28 units, covering 10.5% of the land in Yunnan, had >17% of their areas protected. In addition to climatic factors, topography and human disturbances also significantly affected the relationship between climatic diversity and biodiversity conservation value. Our results suggest that climatic diversity can be an effective surrogate for establishing a more robust reserve network under climate change in Yunnan. Our study improves understanding of the relationship between climatic diversity and biodiversity and helps build an evidence-based foundation for systematic conservation planning that targets climatic diversity in response to climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.13147 | DOI Listing |
BMC Public Health
January 2025
Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.
Background: In a world confronted with new and connected challenges, novel strategies are needed to help children and adults achieve their full potential, to predict, prevent and treat disease, and to achieve equity in services and outcomes. Australia's Generation Victoria (GenV) cohorts are designed for multi-pronged discovery (what could improve outcomes?) and intervention research (what actually works, how much and for whom?). Here, we describe the key features of its protocol.
View Article and Find Full Text PDFNat Food
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.
Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFSci Rep
January 2025
Heidelberg University, Medical Faculty Heidelberg, Center for Pediatrics and Adolescent Medicine, Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
The goal of this analysis is to describe seasonal disaster patterns in Central Europe in order to raise awareness and improve hospital disaster planning and resilience, particularly during peak events. Hospitals are essential pillars of a country's critical infrastructure, vital for sustaining healthcare services and supporting public well-being-a key issue of national security. Disaster planning for hospitals is crucial to ensure their functionality under special circumstances.
View Article and Find Full Text PDFSci Rep
January 2025
U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!