A cantilever nanobiosensor functionalized with vegetable source of peroxidase was developed as an innovative way for glyphosate herbicide detection over a wide concentration range (0.01 to 10 mg L) using atomic force microscopy (AFM) technique. The extract obtained from zucchini (Cucurbita pepo source of peroxidase), with high enzymatic activity and stability has been used as bio-recognition element to develop a nanobiosensor. The polarization-modulated reflection absorption infrared spectroscopy (PM-RAIRS) demonstrated the deposition of enzyme on cantilever surface using self-assembled monolayers (SAM) by the presence of the amide I and II bands. The detection mechanism of glyphosate was based on the changes in surface tension caused by the analyte adsorption, resulting in a conformational change in the enzyme structure. In this way, the results of nanobiosensor demonstrate the potential of the sensing device for detecting glyphosate with a detection limit of 0.028 mg L.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-018-2799-yDOI Listing

Publication Analysis

Top Keywords

glyphosate detection
8
source peroxidase
8
cantilever functionalization
4
functionalization peroxidase
4
peroxidase extract
4
extract low
4
low cost
4
glyphosate
4
cost glyphosate
4
detection
4

Similar Publications

Association between mixed exposure of non-persistent pesticides and liver fibrosis in the general US population: NHANES 2013-2016.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China. Electronic address:

People are continually and simultaneously exposed to various non-persistent pesticides as these chemicals are ubiquitously distributed in the environment. Toxicological studies have indicated the associations between non-persistent pesticides and liver fibrosis in vitro and in vivo. However, epidemical study on the deleterious effect of non-persistent pesticides on the risk of liver fibrosis is rather limited.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D).

View Article and Find Full Text PDF

Background: Ryegrass (Lolium spp.) is a key forage providing a $14 billion contribution to New Zealand's gross domestic product (GDP). However, ryegrass can also act as a weed and evolve resistance to herbicides used for its control.

View Article and Find Full Text PDF

Studies have shown that the presence of allergens, including insecticides, significantly increases the risk of occupational allergic diseases among solar greenhouse workers. However, no studies have yet investigated the relationship between organophosphorus pesticide use by greenhouse workers and allergic diseases, and the role of the flora in this context remains unclear. Therefore, this study aimed to investigate the relationship between combined exposure to organophosphorus pesticides (OPs) and Glyphosate (GLY) and changes in total immunoglobulin E (IgE) levels, as well as to analyze the role of nasal flora in allergic status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!