Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amyloid β, a key molecule in the pathogenesis of Alzheimer's disease (AD), is produced from amyloid precursor protein (APP) by the cleavage of secretases. APP is SUMOylated near the cleavage site of β-secretase. SUMOylation of APP reduces amyloid β production, but its regulatory system is still unclear. SUMOylation, a modification at a lysine residue of a target protein, is mediated by activating, conjugating, and ligating enzymes and is reversed by a family of sentrin/SUMO-specific proteases (SENPs). Here, we found that both SENP1 and SENP2 induced de-SUMOylation of APP. Using quantitative PCR, we also found that expression of SENP1 but not SENP2 increased in an age-dependent manner only in female mice. The results of immunoblot analyses showed that the protein expression was consistent with the PCR results. Females, compared to males, have a higher incidence of AD in humans and show more aggressive amyloid pathology in AD mouse models. Our results provide a clue to understanding the role of SUMOylation in the sex difference in AD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968171 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2018.e00601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!