: Although thousands of clinical isolates of are being sequenced and analysed by short read technology, the data do not resolve the highly variable subtelomeric regions of the genomes that contain polymorphic gene families involved in immune evasion and pathogenesis. There is also no current standard definition of the boundaries of these variable subtelomeric regions. : Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated the genomes of 15 isolates, ten of which are newly cultured clinical isolates. We performed comparative analysis of the entire genome with particular emphasis on the subtelomeric regions and the internal genes clusters. : The nearly complete sequence of these 15 isolates has enabled us to define a highly conserved core genome, to delineate the boundaries of the subtelomeric regions, and to compare these across isolates. We found highly structured variable regions in the genome. Some exported gene families purportedly involved in release of merozoites show copy number variation. As an example of ongoing genome evolution, we found a novel CLAG gene in six isolates. We also found a novel gene that was relatively enriched in the South East Asian isolates compared to those from Africa. : These 15 manually curated new reference genome sequences with their nearly complete subtelomeric regions and fully assembled genes are an important new resource for the malaria research community. We report the overall conserved structure and pattern of important gene families and the more clearly defined subtelomeric regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964635 | PMC |
http://dx.doi.org/10.12688/wellcomeopenres.14571.1 | DOI Listing |
Nucleic Acids Res
January 2025
Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
Background: The study of newly formed centromere with stable transmission ability can provide theoretical guidance for the construction of artificial chromosomes. More neocentromeres are needed to study the mechanisms of their formation.
Results: In this study, a minichromosome 7RLmini was derived from the progeny of wheat-rye 7R monosomic addition line.
The current reference genome of , GRCm39, has major gaps in both euchromatic and heterochromatic regions associated with repetitive sequences. In this work, we have sequenced and assembled the telomere-to-telomere genome of mouse haploid embryonic stem cells. The results reveal more than 7.
View Article and Find Full Text PDFElife
December 2024
Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States.
The environmental challenges the human malaria parasite, , faces during its progression into its various lifecycle stages warrant the use of effective and highly regulated access to chromatin for transcriptional regulation. Microrchidia (MORC) proteins have been implicated in DNA compaction and gene silencing across plant and animal kingdoms. Accumulating evidence has shed light on the role MORC protein plays as a transcriptional switch in apicomplexan parasites.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Neonatology Department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China. Electronic address:
Background: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant condition caused by shortened D4Z4 repeat units in the subtelomeric region of 4q35, always on the 4qA haplotype, or due to variants in the SMCHD1 gene leading to hypomethylation of the D4Z4 macrosatellite DNA repeats.
Methods: To explore the potential genetic basis for suspected FSHD presenting with early onset in two siblings without evident family history of the disorder, whole genome sequencing (WGS) and optical genome mapping (OGM) were conducted on the affected individuals and their parents.
Results: The two siblings manifested severe and early-onset clinical features consistent with FSHD, initiating with facial muscle weakness that progressively spread downward since the age of four months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!