This study is designed to investigate the effect of artemether on type 2 diabetic db/db mice. The experiments consisted of three groups: normal control (NC, db/+, 1% methylcellulose, intragastric administration), diabetic control (DM, db/db, 1% methylcellulose, intragastric administration), and artemether treated (artemether, db/db, 200 mg/kg of artemether, intragastric administration). The treatment lasted for two weeks. The food intake, body weight, and fasting blood glucose of mice were measured every three days. At the start and end of the experiment, the intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (IPITT) were performed. We determined the serum insulin and glucagon levels by ELISA kits and calculated insulin resistance index (HOME-IR). HE staining was used to observe the morphologies of pancreas and liver in mice. The damage of pancreatic beta cells was evaluated by TUNEL staining and immunofluorescence. We found the following: (1) compared with the DM group, the food intake and weight increase rate of artemether group significantly reduced ( < 0.05); (2) compared with pretreatment, artemether significantly reduced the fasting blood glucose levels, and the areas under the curves (AUCs) of IPGTT were decreased significantly, increasing the tolerance to glucose of db/db mice. ( < 0.05); (3) artemether improved hyperinsulinemia and decreased the AUCs of IPITT and HOME-IR, increasing the insulin sensitivity of db/db mice. (4) Artemether significantly ameliorated islet vacuolar degeneration and hepatic steatosis in db/db mice. (5) Artemether reduced the apoptosis of pancreatic beta cells and increased insulin secretion in db/db mice compared with DM group ( < 0.05). Our results indicated that artemether significantly improved glucose homeostasis and insulin resistance and had the potential activity to prevent obesity, reduced the severity of fatty liver, and protected pancreatic beta cells, promising to treat type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971258 | PMC |
http://dx.doi.org/10.1155/2018/8639523 | DOI Listing |
Invest Ophthalmol Vis Sci
December 2024
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States.
Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.
View Article and Find Full Text PDFMetabolites
December 2024
Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.
Diabetic encephalopathy (DE) is a neurological complication of diabetes marked by cognitive decline and complex metabolic disturbances. Salidroside (SAL), a natural compound with antioxidant and neuroprotective properties, has shown promise in alleviating diabetic complications. Exploring the spatial metabolic reprogramming in DE and elucidating SAL's metabolic effects are critical for deepening our understanding of its pathogenesis and developing effective therapeutic strategies.
View Article and Find Full Text PDFMol Med
December 2024
Department of Nephrology, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China.
Background: Diabetes often causes diabetic nephropathy (DN), a serious long-term complication. It is characterized by chronic proteinuria, hypertension, and kidney function decline, can progress to end-stage renal disease, lowering patients' quality of life and lifespan. Inflammation and apoptosis are key to DN development.
View Article and Find Full Text PDFAntioxid Redox Signal
December 2024
National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
Biochem Biophys Res Commun
December 2024
Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:
Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!