This study is designed to investigate the effect of artemether on type 2 diabetic db/db mice. The experiments consisted of three groups: normal control (NC, db/+, 1% methylcellulose, intragastric administration), diabetic control (DM, db/db, 1% methylcellulose, intragastric administration), and artemether treated (artemether, db/db, 200 mg/kg of artemether, intragastric administration). The treatment lasted for two weeks. The food intake, body weight, and fasting blood glucose of mice were measured every three days. At the start and end of the experiment, the intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (IPITT) were performed. We determined the serum insulin and glucagon levels by ELISA kits and calculated insulin resistance index (HOME-IR). HE staining was used to observe the morphologies of pancreas and liver in mice. The damage of pancreatic beta cells was evaluated by TUNEL staining and immunofluorescence. We found the following: (1) compared with the DM group, the food intake and weight increase rate of artemether group significantly reduced ( < 0.05); (2) compared with pretreatment, artemether significantly reduced the fasting blood glucose levels, and the areas under the curves (AUCs) of IPGTT were decreased significantly, increasing the tolerance to glucose of db/db mice. ( < 0.05); (3) artemether improved hyperinsulinemia and decreased the AUCs of IPITT and HOME-IR, increasing the insulin sensitivity of db/db mice. (4) Artemether significantly ameliorated islet vacuolar degeneration and hepatic steatosis in db/db mice. (5) Artemether reduced the apoptosis of pancreatic beta cells and increased insulin secretion in db/db mice compared with DM group ( < 0.05). Our results indicated that artemether significantly improved glucose homeostasis and insulin resistance and had the potential activity to prevent obesity, reduced the severity of fatty liver, and protected pancreatic beta cells, promising to treat type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971258PMC
http://dx.doi.org/10.1155/2018/8639523DOI Listing

Publication Analysis

Top Keywords

db/db mice
24
intragastric administration
12
pancreatic beta
12
beta cells
12
artemether
11
db/db
8
artemether db/db
8
mice
8
methylcellulose intragastric
8
food intake
8

Similar Publications

Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.

View Article and Find Full Text PDF

Mass Spectrometry Imaging Reveals Spatial Metabolic Alterations and Salidroside's Effects in Diabetic Encephalopathy.

Metabolites

December 2024

Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.

Diabetic encephalopathy (DE) is a neurological complication of diabetes marked by cognitive decline and complex metabolic disturbances. Salidroside (SAL), a natural compound with antioxidant and neuroprotective properties, has shown promise in alleviating diabetic complications. Exploring the spatial metabolic reprogramming in DE and elucidating SAL's metabolic effects are critical for deepening our understanding of its pathogenesis and developing effective therapeutic strategies.

View Article and Find Full Text PDF

Background: Diabetes often causes diabetic nephropathy (DN), a serious long-term complication. It is characterized by chronic proteinuria, hypertension, and kidney function decline, can progress to end-stage renal disease, lowering patients' quality of life and lifespan. Inflammation and apoptosis are key to DN development.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetic kidney disease (DKD) is a major cause of kidney failure, largely due to damage in podocytes, which are essential for kidney function.
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key player in protecting cells from oxidative stress, making it a promising target for DKD therapies.
  • The study found that DDO-1039, a new Nrf2 activator, improved kidney health in diabetic mice by reducing podocyte injury, lowering blood sugar levels, and decreasing inflammation, endorsing its potential as a treatment for DKD.
View Article and Find Full Text PDF

Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model.

Biochem Biophys Res Commun

December 2024

Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:

Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!