The encapsulation of individual pairs of plasmonic nanoparticles (NPs) in liposomes is introduced as a new strategy for utilizing plasmon coupling to monitor interactions between co-confined NPs in a nanoconfinement that ensures high local NP concentrations. We apply the approach to monitor transient binding contacts between noncovalently tethered 55 nm diameter gold NPs, which were functionalized with cytosine (C)-rich DNAs, in acidic and mildly basic buffer conditions. At pH = 8, a rich spectral dynamics indicates DNA-mediated transient binding and unbinding of co-confined NPs due to weak attractive interparticle interactions. A decrease in pH from 8 to 4 is observed to favor the associated state for some co-confined NPs, presumably due to a stabilization of the bound dimer configuration through noncanonical C-C bonds between the DNA-functionalized NPs. Plasmonic nanoemitters whose spectral response switches in response to chemical cues (in this work pH) represent optical transducers with a rich application space in chemical sensing, cell analysis and nanophotonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983364 | PMC |
http://dx.doi.org/10.1038/micronano.2016.86 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!