The encapsulation of luminescent gold(iii) complexes by metal-organic frameworks (MOFs) lays the groundwork for new phosphorescent materials with activities that are not readily achieved by the host MOF materials or gold(iii) complexes alone. In this work, strong phosphorescence with lifetimes of up to ∼50 μs in open air at room temperature has been achieved by incorporation of cationic cyclometalated gold(iii) complexes into MOFs with anionic frameworks to form Au@MOFs. The Au@MOFs display solid state two-photon-induced phosphorescence. Photo-reduction of methyl viologen to the reduced radical was achieved inside Au@MOFs and in the presence of EtN upon excitation at > 370 nm under ambient conditions. These Au@MOFs comprise a class of reusable and size-selective heterogeneous photo-catalysts for the aerobic oxidation of secondary amines to imines as well as five other reactions, including oxidative C-H functionalization under aerobic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947532 | PMC |
http://dx.doi.org/10.1039/c5sc02216a | DOI Listing |
Chem Sci
December 2024
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
Rationalizing the impact of oxidation states of Au-based complexes on function require synthetic strategies that allow for conserved molecular formula in Au(I) and their Au(III) counterparts. Oftentimes achieving Au(I) and Au(III) coordination complexes with the same ligand system is challenging due to the reactivity and stability of the starting Au(I) or Au(III) starting materials. Thus, attempts to study the impact of oxidation state on biological function has been elusive.
View Article and Find Full Text PDFJ Biol Inorg Chem
December 2024
Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden.
The onset of resistance to artemisinin for malaria treatment has stimulated the quest for novel antimalarial drugs. Herein, the gold(III) coordination complexes Aubipy [Au(bipy)Cl] (bipy = 2,2'-bipyridine), Auphen [Au(phen)Cl] (phen = phenanthroline), Auterpy [Au(terpy)Cl] (terpy = 2,2';6',2″-terpyridine), and corresponding hydrolyzed species, have been investigated as inhibitors of the Plasmodium falciparum aquaglyceroporin (PfAQP) protein by computational methods. Through an in-silico approach using an Umbrella Sampling protocol to sample how Aubipy, Auphen, and Auterpy permeate through the PfAQP, their permeability coefficients were estimated using the Inhomogeneous Solubility Diffusion (ISD) model with promising results.
View Article and Find Full Text PDFAnal Methods
December 2024
Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
Lead (Pb) and hexavalent chromium (Cr) are highly toxic pollutants with no safe exposure levels, posing significant health risks globally, especially in developing countries. Current detection methods for these metals are often complex and inaccessible, highlighting the urgent need for innovative approaches. In this study, we present a rapid, cost-effective colorimetric assay utilizing ascorbic acid-capped gold nanoparticles (AuNPs) for the selective detection of Pb and Cr ions at levels recommended by regulatory bodies such as the WHO and EPA.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States; Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Center for Bioelectronics and Nanomedicine, University of Kentucky, Lexington, Kentucky, USA. Electronic address:
The elusiveness of triple-negative breast cancer from targeted therapy has redirected focus toward exploiting the metabolic shortcomings of these highly metastatic subtypes of breast cancer. Cueing from the metabolic heterogeneity of TNBC and the exposition of the dual dependence of some TNBCs on OXPHOS and glycolysis for ATP, we herein report the efficacy of cotreatment of TNBCs with an OXPHOS inhibitor, 2a and 2DG, a potent glycolysis inhibitor. 2a-2DG cotreatment inhibited TNBC cell proliferation with IC of ∼5 to 36 times lower than that of 2a alone and over 5000 times lower than IC of 2DG alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!