Terpyridine-Cu(ii) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme.

Chem Sci

State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China . Email: ; Email:

Published: October 2015

The cofactors commonly involved in natural enzymes have provided the inspiration for numerous advances in the creation of artificial metalloenzymes. Nevertheless, to design an appropriate cofactor for a given biomolecular scaffold or remains a challenge in developing efficient catalysts in biochemistry. Herein, we extend the idea of G-quadruplex-targeting anticancer drug design to construct a G-quadruplex DNA metalloenzyme. We found that a series of terpyridine-Cu(ii) complexes (CuL) can serve as excellent cofactors to dock with human telemetric G-quadruplex DNA. The resulting G-quadruplex DNA metalloenzyme utilising CuL1 catalyzes an enantioselective Diels-Alder reaction with enantioselectivity of >99% enantiomeric excess and about 73-fold rate acceleration compared to CuL1 alone. The terpyridine-Cu(ii) complex cofactors demonstrate dual functions, both as an active site to perform catalysis and as a structural regulator to promote the folding of human telemetric G-quadruplex DNA towards excellent catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949855PMC
http://dx.doi.org/10.1039/c5sc01381jDOI Listing

Publication Analysis

Top Keywords

g-quadruplex dna
20
dna metalloenzyme
12
human telemetric
8
telemetric g-quadruplex
8
dna
6
g-quadruplex
5
terpyridine-cuii targeting
4
targeting human
4
human telomeric
4
telomeric dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!