AI Article Synopsis

Article Abstract

A microfluidic flow-based platform (μFP), able to stimulate platelets via exposure of shear stress patterns pertinent to cardiovascular devices and prostheses, was compared to the Hemodynamic Shearing Device (HSD)-a state-of-the-art bench-top system for exposure of platelets to defined levels and patterns of shear. Platelets were exposed to time-varying shear stress patterns in the two systems; in detail, platelets were recirculated in the μFP or stimulated in the HSD to replicate comparable exposure time. Shear-mediated platelet activation was evaluated via (i) the platelet activity state assay, allowing the measurement of platelet-mediated thrombin generation and associated prothrombotic tendencies, (ii) scanning electron microscopy to evaluate morphological changes of sheared platelets, and (iii) flow cytometry for the determination of platelet phosphatidylserine exposure as a marker of shear activation. The results revealed good matching and comparability between the two systems, with similar trends of platelet activation, formation of microaggregates, and analogous trends of activation marker exposure for both the HSD and microfluidic-stimulated samples. These findings support future translation of the microfluidic platform as a Point-of-Care facsimile system for the diagnosis of thrombotic risk in patients implanted with cardiovascular devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963949PMC
http://dx.doi.org/10.1063/1.5024500DOI Listing

Publication Analysis

Top Keywords

microfluidic flow-based
8
shear-mediated platelet
8
hemodynamic shearing
8
shearing device
8
shear stress
8
stress patterns
8
cardiovascular devices
8
platelet activation
8
platelet
5
platelets
5

Similar Publications

Simultaneous and Ultraspecific Optical Detection of Multiple miRNAs Using a Liquid Flow-Based Microfluidic Assay.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.

Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.

View Article and Find Full Text PDF

Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role.

View Article and Find Full Text PDF

Rapid diagnostic tests (RDTs) offer valuable diagnostic information in a quick, easy-to-use and low-cost format. While RDTs are one of the most commonly used tools for in vitro diagnostic testing, they require the collection of a blood sample, which is painful, poses risks of infection and can lead to complications. We introduce a blood-free point-of-care diagnostic test for the rapid detection of protein biomarkers in dermal interstitial fluid (ISF).

View Article and Find Full Text PDF

Multicolor iLIFE (m-iLIFE) volume cytometry for high-throughput imaging of multiple organelles.

Sci Rep

October 2024

Mondal Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.

To be able to resolve multiple organelles at high throughput is an incredible achievement. This will have immediate implications in a range of fields ranging from fundamental cell biology to translational medicine. To realize such a high-throughput multicolor interrogation modality, we have developed a light-sheet based flow imaging system that is capable of visualizing multiple sub-cellular components with organelle-level resolution.

View Article and Find Full Text PDF

Rapid and specific detection of nanoparticles and viruses one at a time using microfluidic laminar flow and confocal fluorescence microscopy.

iScience

October 2024

Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

Article Synopsis
  • Traditional virus detection methods like PCR require a lot of time, technical expertise, and specialized lab equipment, while faster antigen tests lack sensitivity.
  • This study presents a new method using a confocal-based flow virometer that allows for quick and precise detection of single nanoparticles by leveraging laminar flow and fluorescence signals.
  • The research shows that this technology can accurately identify viruses, including SARS-CoV-2, and suggests the possibility of making it portable and user-friendly for clinical applications in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!