Electric cell-substrate impedance sensing (ECIS) is a quickly advancing field to measure the barrier function of endothelial cells. Most ECIS systems that are commercially available use gold electrodes, which are opaque and do not allow for real-time imaging of cellular responses. In addition, most ECIS systems have a traditional tissue culture Petri-dish set up. This conventional set-up does not allow the introduction of physiologically relevant shear stress, which is crucial for the endothelial cell barrier function. Here, we created a new ECIS micro-bioreactor (MBR) that incorporates a clear electrode made of indium tin oxide in a microfluidic device. Using this device, we demonstrate the ability to monitor the barrier function along culture of cells under varying flow rates. We show that while two cell types align in the direction of flow in responses to high shear stress, they differ in the barrier function. Additionally, we observe a change in the barrier function in response to chemical perturbation. Following exposure to EDTA that disrupts cell-to-cell junctions, we could not observe distinct morphological changes but measured a loss of impedance that could be recovered with EDTA washout. High magnification imaging further demonstrates the loss and recovery of the barrier structure. Overall, we establish an ECIS MBR capable of real-time monitoring of the barrier function and cell morphology under shear stress and allowing high-resolution analysis of the barrier structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953754PMC
http://dx.doi.org/10.1063/1.5026901DOI Listing

Publication Analysis

Top Keywords

barrier function
28
shear stress
16
barrier
9
ecis systems
8
barrier structure
8
function
7
ecis
5
microfluidic platform
4
platform real
4
real time
4

Similar Publications

Proposal: Bold New Indications for Transcatheter Pulmonary Flow Restrictors.

Pediatr Cardiol

January 2025

Pediatric Heart Center, Johann-Wolfgang-Goethe University Clinic, Theodor-Storm-Kai 7, 60596, Frankfurt, Germany.

This proposal presents a proof of concept for the use of pulmonary flow restrictors (PFRs) based on MVP™-devices, drawing from clinical experience, and explores their potential role in the management of newborns with hypoplastic left heart syndrome (HLHS), other complex left heart lesions, and infants with end-stage dilated cardiomyopathy (DCM). At this early stage of age, manually adjusted PFRs can be tailored to patient's size and hemodynamic needs. Although currently used off-label, PFRs have substantial potential to improve outcomes in these vulnerable patient populations.

View Article and Find Full Text PDF

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

The scientific establishment of the Ecological Security Pattern (ESP) is crucial for fostering the synergistic development of ecological and recreational functions, thereby enhancing urban ecological protection, recreational development, and sustainable growth. This study aimed to propose a novel method of constructing ESP considering both ecological and recreational functions, and to reconstruct ESP by weighing the relationship between ecological protection and recreational development. Utilizing Fuzhou City as a case study, a comprehensive application of methodologies including Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, ArcGIS spatial analysis, social network analysis (SNA), and circuit theory is employed to develop both the ESP and the Recreational Spatial Pattern (RSP).

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

P-ecing together brain calcification mechanisms for therapeutic advancement.

Trends Mol Med

January 2025

Department of Biomedicine, University of Bergen, Bergen, Norway. Electronic address:

Seven primary familial brain calcification genes have been identified but their role in disease mechanisms has been less explored. Cheng et al. recently demonstrated that astrocyte-mediated regulation of brain phosphate (P) involves direct and functional interactions among three of these proteins, paving the way for new strategies to combat brain calcification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!