Objectives: The present study was carried out to study the protective effects of quercetin and -lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats.

Materials And Methods: The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving -lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving -lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving -lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation.

Results: Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl exposed rats to either quercetin or -lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or -lipoic acid pretreatment of AlCl exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and -lipoic acid resulted in a tendency towards normalization of most of the parameters.

Conclusions: Quercetin and -lipoic acid complemented each other in protecting the rat brain against oxidative stress induced by aluminium chloride.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976966PMC
http://dx.doi.org/10.1155/2018/2817036DOI Listing

Publication Analysis

Top Keywords

body weight
48
-lipoic acid
36
aluminium chloride
28
group rats
28
rats receiving
28
quercetin -lipoic
24
weeks group
24
weight weeks
24
chloride 7 mg/kg
16
7 mg/kg body
16

Similar Publications

Purpose: Motion capture technology is quickly evolving providing researchers, clinicians, and coaches with more access to biomechanics data. Markerless motion capture and inertial measurement units (IMUs) are continually developing biomechanics tools that need validation for dynamic movements before widespread use in applied settings. This study evaluated the validity of a markerless motion capture, IMU, and red, green, blue, and depth (RGBD) camera system as compared to marker-based motion capture during countermovement jumps, overhead squats, lunges, and runs with cuts.

View Article and Find Full Text PDF

This study aimed to investigate the relationship between unintentional weight loss and 30-day mortality in sepsis patients in the intensive care unit (ICU). A retrospective cohort study sepsis patients in the ICU was conducted using data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, involving 1842 sepsis patients in the ICU. We utilized multivariate Cox regression analysis to evaluate the association between unintentional weight loss and the risk of 30-day mortality.

View Article and Find Full Text PDF

Vitamin D is crucial for maintaining bone health and development, and bone mineral accumulation during childhood and adolescence affects long-term bone health. Vitamin D deficiency has been widely recognized as one of the main causes of osteoporosis and fractures, especially during the growth and development stage of children. Recent studies have shown that vitamin D deficiency may affect the deviation of bone development in children by mediating lipid metabolism disorders, but its specific mechanism of action has not been fully elucidated.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!